2017年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)



单选题 (共 8 题 ),每题只有一个选项正确
若 $f(x)=\left\{\begin{array}{cc}\frac{1-\cos \sqrt{x}}{a x}, & x>0 \\ b, & x \leq 0\end{array}\right.$ 在 $x=0$ 处连续, 则
$\text{A.}$ $a b=\frac{1}{2}$ $\text{B.}$ $a b=-\frac{1}{2}$ $\text{C.}$ $a b=0$ $\text{D.}$ $a b=2$

设二阶可导函数 $f(x)$ 满足 $f(1)=f(-1)=1, f(0)=-1$且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $\int_{-1}^1 f(x) \mathrm{d} x>0$ $\text{B.}$ $\int_{-1}^1 f(x) \mathrm{d} x < 0$ $\text{C.}$ $\int_{-1}^0 f(x) \mathrm{d} x>\int_0^1 f(x) \mathrm{d} x$ $\text{D.}$ $\int_{-1}^0 f(x) \mathrm{d} x < \int_0^1 f(x) \mathrm{d} x$

设数列 $\left\{x_n\right\}$ 收敛,则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} \sin x_n=0$ 时, $\lim _{n \rightarrow \infty} x_n=0$ $\text{B.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+\sqrt{\left|x_n\right|}\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$ $\text{C.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+x_n^2\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$ $\text{D.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+\sin x_n\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$

微分方程 $y^{\prime \prime}-4 y^{\prime}+8 y=e^{2 x}(1+\cos 2 x)$ 的特解可设为 $y^*=(\quad)$
$\text{A.}$ $A e^{2 x}+e^{2 x}(B \cos 2 x+C \sin 2 x)$ $\text{B.}$ $A x e^{2 x}+e^{2 x}(B \cos 2 x+C \sin 2 x)$ $\text{C.}$ $A e^{2 x}+x e^{2 x}(B \cos 2 x+C \sin 2 x)$ $\text{D.}$ $A x e^{2 x}+x e^{2 x}(B \cos 2 x+C \sin 2 x)$

设 $f(x, y)$ 具有一阶偏导数,且在任意的 $(x, y)$ 都有 $\frac{\partial f(x, y)}{\partial x}>0, \frac{\partial f(x, y)}{\partial y} < 0$ ,则
$\text{A.}$ $f(0,0)>f(1,1)$ $\text{B.}$ $f(0,0) < f(1,1)$ $\text{C.}$ $f(0,1)>f(1,0)$ $\text{D.}$ $f(0,1) < f(1,0)$

甲乙两人赛跑,计时开始时,甲在乙前方 10 (单位:m) 处.图中,实线表示甲的速度曲线 $v=v_1(t)$ (单位: $\mathrm{m} / \mathrm{s}$ )虚线表示乙的速度曲线 $v=v_2(t)$ ,三块阴影部分面积的数值依次为 $10 , 20 , 3$ ,计时开始后乙追上甲的时刻记为 $t_0$ (单位: $s$ ),则
$\text{A.}$ $t_0=10$ $\text{B.}$ $15 < t_0 < 20$ $\text{C.}$ $t_0=25$ $\text{D.}$ $t_0>25$

设 $A$ 为 3 阶矩阵, $P=\left(\alpha_1, \alpha_2, \alpha_3\right)$ 为可逆矩阵,使得 $P^{-1} A P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, 则 $A\left(\alpha_1+\alpha_2+\alpha_3\right)=(\quad)$
$\text{A.}$ $\alpha_1+\alpha_2$ $\text{B.}$ $\alpha_2+2 \alpha_3$ $\text{C.}$ $\alpha_2+\alpha_3$ $\text{D.}$ $\alpha_1+2 \alpha_2$

已知矩阵 $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right] , B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ , $C=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ ,则
$\text{A.}$ $A$ 与 $C$ 相似, $B$ 与 $C$ 相似 $\text{B.}$ $A$ 与 $C$ 相似, $B$ 与 $C$ 不相似 $\text{C.}$ $A$ 与 $C$ 不相似, $B$ 与 $C$ 相似 $\text{D.}$ $A$ 与 $C$ 不相似, $B$ 与 $C$ 不相似

填空题 (共 6 题 ),请把答案直接填写在答题纸上
曲线 $y=x\left(1+\arcsin \frac{2}{x}\right)$ 的斜渐近线方程为

设函数 $y=y(x)$ 由参数方程 $\left\{\begin{array}{l}x=t+e^t, \\ y=\sin t\end{array}\right.$ 确定,则 $\left.\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right|_{t=0}=$

$\int_0^{+\infty} \frac{\ln (1+x)}{(1+x)^2} \mathrm{~d} x=$

设函数 $f(x, y)$ 具有一阶连续偏导数,且 $\mathrm{d} f(x, y)=y e^y \mathrm{~d} x+x(1+y) e^y \mathrm{~d} y, f(0,0)=0 ,$则 $f(x, y)=$

$\int_0^1 \mathrm{~d} y \int_y^1 \frac{\tan x}{x} \mathrm{~d} x=$

设矩阵 $A=\left(\begin{array}{ccc}4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1\end{array}\right)$ 的一个特征向量为 $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ , 则 $a=$

解答题 (共 9 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{x \rightarrow 0^{+}} \frac{\int_0^x \sqrt{x-t} e^t \mathrm{~d} t}{\sqrt{x^3}}$

设函数 $f(u, v)$ 具有二阶连续偏导数, $y=f\left(e^x, \cos x\right)$ ,求 $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0},\left.\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right|_{x=0}$.

求 $\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{k}{n^2} \ln \left(1+\frac{k}{n}\right)$.

已知函数 $y(x)$ 由方程 $x^3+y^3-3 x+3 y-2=0$ 确定,求 $y(x)$ 的极值.

设函数 $f(x)$ 在区间 $[0,1]$ 上具有二阶导数,且
$$
f(1)>0, \lim _{x \rightarrow 0^{+}} \frac{f(x)}{x} < 0 .
$$

证明:(1)方程 $f(x)=0$ 在区间 $(0,1)$ 内至少存在一个实根;
(2) 方程 $f(x) f^{\prime \prime}(x)+\left[f^{\prime}(x)\right]^2=0$ 在区间 $(0,1)$ 内至少存在两个不同实根。

已知平面区域 $D=\left\{(x, y) \mid x^2+y^2 \leq 2 y\right\}$ ,计算二重积分 $\iint_D(x+1)^2 \mathrm{~d} x \mathrm{~d} y$.

设 $y(x)$ 是区间 $\left(0, \frac{3}{2}\right)$ 内的可导函数,且 $y(1)=0$ ,点 $P$是曲线 $L: y=y(x)$ 上的任意一点, $L$ 在点 $P$ 处的切线与 $y$轴相交于点 $\left(0, Y_P\right)$ ,法线与 $x$ 轴相交于点 $\left(X_P, 0\right)$ ,若 $X_P=Y_P$ ,求 $L$ 上点的坐标 $(x, y)$ 满足的方程。

设 3 阶矩阵 $\boldsymbol{A}=\left(\alpha_1, \alpha_2, \alpha_3\right)$ 有 3 个不同的特征值,且 $\alpha_3=\alpha_1+2 \alpha_2$ 。
(1) 证明 $r(A)=2$ ;
(2) 如果 $\beta=\alpha_1+\alpha_2+\alpha_3$, 求方程组 $\boldsymbol{A x}=\beta$ 的通解.

设二次型 $f\left(x_1, x_2, x_3\right)=2 x_1^2-x_2^2+a x_3^2+2 x_1 x_2$ $-8 x_1 x_3+2 x_2 x_3$ 在正交变换 $x=Q y$ 下的标准型为
$$
\lambda_1 y_1^2+\lambda_2 y_2^2
$$

求 $a$ 的值及一个正交矩阵 $Q$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。