设 $A$ 为 3 阶矩阵, $P=\left(\alpha_1, \alpha_2, \alpha_3\right)$ 为可逆矩阵,使得 $P^{-1} A P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, 则 $A\left(\alpha_1+\alpha_2+\alpha_3\right)=(\quad)$
$\text{A.}$ $\alpha_1+\alpha_2$
$\text{B.}$ $\alpha_2+2 \alpha_3$
$\text{C.}$ $\alpha_2+\alpha_3$
$\text{D.}$ $\alpha_1+2 \alpha_2$