设二阶可导函数 $f(x)$ 满足 $f(1)=f(-1)=1, f(0)=-1$且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $\int_{-1}^1 f(x) \mathrm{d} x>0$
$\text{B.}$ $\int_{-1}^1 f(x) \mathrm{d} x < 0$
$\text{C.}$ $\int_{-1}^0 f(x) \mathrm{d} x>\int_0^1 f(x) \mathrm{d} x$
$\text{D.}$ $\int_{-1}^0 f(x) \mathrm{d} x < \int_0^1 f(x) \mathrm{d} x$