设数列 $\left\{x_n\right\}$ 收敛,则
A. 当 $\lim _{n \rightarrow \infty} \sin x_n=0$ 时, $\lim _{n \rightarrow \infty} x_n=0$
B. 当 $\lim _{n \rightarrow \infty}\left(x_n+\sqrt{\left|x_n\right|}\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$
C. 当 $\lim _{n \rightarrow \infty}\left(x_n+x_n^2\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$
D. 当 $\lim _{n \rightarrow \infty}\left(x_n+\sin x_n\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$