查看原题
设 $y(x)$ 是区间 $\left(0, \frac{3}{2}\right)$ 内的可导函数,且 $y(1)=0$ ,点 $P$是曲线 $L: y=y(x)$ 上的任意一点, $L$ 在点 $P$ 处的切线与 $y$轴相交于点 $\left(0, Y_P\right)$ ,法线与 $x$ 轴相交于点 $\left(X_P, 0\right)$ ,若 $X_P=Y_P$ ,求 $L$ 上点的坐标 $(x, y)$ 满足的方程。
                        
不再提醒