渐近线

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
当 $x>0$ 时,曲线 $y=x \sin \frac{1}{x} $ (  )
$\text{A.}$ 有且仅有水平渐近线. $\text{B.}$ 有且仅有铅直渐近线. $\text{C.}$ 既有水平渐近线, 也有铅直渐近线. $\text{D.}$ 既无水平渐近线, 也无铅直渐近线.

曲线 $y=e^{\frac{1}{x^2}} \arctan \frac{x^2+x-1}{(x-1)(x+2)}$ 的渐近线有
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

曲线 $y=e^{\frac{1}{x^2}} \arctan \frac{x^2+x-1}{(x-1)(x+2)}$ 的渐近线有
$\text{A.}$ 1 条 $\text{B.}$ 2条 $\text{C.}$ 3 条 $\text{D.}$ 4 条

曲线 $y=x e^{\frac{1}{x^2}}(\quad)$
$\text{A.}$ 仅有水平渐近线 $\text{B.}$ 仅有铅直渐近线 $\text{C.}$ 既有铅直又有水平渐近线 $\text{D.}$ 既有铅直又有斜渐近线

曲线 $y=\frac{1}{x}+\ln \left(1+e^x\right)$ 渐近线的条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

曲线 $y=\frac{x^2+x}{x^2-1}$ 渐近线的条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

下列曲线中有渐近线的是
$\text{A.}$ $y=x+\sin x$ $\text{B.}$ $y=x^2+\sin x$ $\text{C.}$ $y=x+\sin \frac{1}{x}$ $\text{D.}$ $y=x^2+\sin \frac{1}{x}$

下列曲线中有渐近线的是
$\text{A.}$ $y=x+\sin x$ $\text{B.}$ $y=x^2+\sin x$ $\text{C.}$ $y=x+\sin \frac{1}{x}$ $\text{D.}$ $y=x^2+\sin \frac{1}{x}$

曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x-1}\right)$ 的斜斩近线方程为
$\text{A.}$ $y=x+\mathrm{e}$ $\text{B.}$ $y=x+\frac{1}{\mathrm{e}}$ $\text{C.}$ $y=x$ $\text{D.}$ $y=x-\frac{1}{\mathrm{e}}$

二、填空题 (共 7 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
曲线 $y=x^2 e^{-x^2}$ 的渐近线方程为


曲线 $y=(2 x-1) e^{\bar{x}}$ 的斜渐进线方程为


曲线 $y=\frac{x^2}{2 x+1}$ 的斜渐近线方程为


曲线 $y=\frac{(1+x)^{\frac{3}{2}}}{\sqrt{x}}$ 的斜渐近线方程为


曲线 $y=\frac{2 x^3}{x^2+1}$ 的渐近线方程为


曲线 $y=\frac{x^3}{1+x^2}+\arctan \left(1+x^2\right)$ 的斜渐近线方程为


曲线 $y=x\left(1+\arcsin \frac{2}{x}\right)$ 的斜渐近线方程为


三、解答题 ( 共 5 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求曲线 $y=\frac{x^{1+x}}{(1+x)^x}(x>0)$ 的斜渐近线方程.



已知 $f(x)=\frac{x|x|}{1+x}$ ,求 $f(x)$ 的凹凸性及渐近线。



设 $y=y(x)$ 满足

$$
y^{\prime}+\frac{1}{2 \sqrt{x}} y=2+\sqrt{x}, y(1)=3
$$


求曲线 $y=y(x)$ 的渐近线.



求曲线 $y=\frac{x^2 \arctan x}{x-1}-x$ 的渐近线方程.



求曲线 $y=x^2\left[\frac{\left(1+\frac{1}{x}\right)^x}{ e }-1\right](x>0)$ 的斜渐近线.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。