二重积分(二)

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x, y)=1+\frac{x y}{\sqrt{1+y^3}}$, 则积分 $I=\int_0^1 \mathrm{~d} x \int_{x^2}^1 f(x, y) \mathrm{d} y=$
$\text{A.}$ $\frac{1}{3}(\sqrt{2}+1)$. $\text{B.}$ $\frac{1}{6}(\sqrt{2}-1)$. $\text{C.}$ $\frac{1}{6}(\sqrt{2}+1)$. $\text{D.}$ $\frac{1}{3}(\sqrt{2}-1)$.

设二重积分 $I_1=\iint_D \frac{x+y-1}{4} \mathrm{~d} x \mathrm{~d} y, I_2=\iint_D\left(\frac{x+y-1}{4}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D\left(\frac{x+y-1}{4}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其 中 $D=\left\{(x, y) \mid(x-2)^2+(y-1)^2 \leqslant 2\right\}$, 则 $I_1, I_2, I_3$ 的大小关系为
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_3 < I_1 < I_2$. $\text{D.}$ $I_2 < I_3 < I_1$.

设 $D=\left\{(x, y) \mid x^2+y^2 \leq R^2\right\}$, 则 $\iint_D \sqrt{x^2+y^2} \mathrm{~d} \sigma=$.
$\text{A.}$ $\pi R^3$ $\text{B.}$ $\frac{2 \pi R^3}{3}$ $\text{C.}$ $\pi R^2$ $\text{D.}$ $2 \pi R^2$

设函数 $f(x)=\iint_{u^2+v^2 \leqslant x^2} \arctan \left(1+\sqrt{u^2+v^2}\right) \mathrm{d} u \mathrm{~d} v(x>0)$, 则 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{\mathrm{e}^{-2 x}-1+2 x}=$
$\text{A.}$ $-\frac{\pi^2}{8}$. $\text{B.}$ $-\frac{\pi^2}{4}$. $\text{C.}$ $\frac{\pi^2}{4}$. $\text{D.}$ $\frac{\pi^2}{8}$.

二、填空题 (共 3 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
积分 $\int_{0}^{2} d x \int_{x}^{2} e^{-y^{2}} d y$ 的值等于


设区域 $D$ 为 $x^{2}+y^{2} \leqslant R^{2}$, 则 $\iint_{D}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) \mathrm{d} x \mathrm{~d} y=$


设区域 $D=\left\{(x, y) \mid 1 \leqslant x^2+y^2 \leqslant 4, x \geqslant 0, y \geqslant 0\right\}$, 则二重积分 $I=\iint \frac{x \sqrt{x^2+y^2}}{x+y} \mathrm{~d} x \mathrm{~d} y=$


三、解答题 ( 共 9 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $u=f(r), r=\sqrt{x^2+y^2+z^2}$, 其中函数 $f$ 二阶可微, 且 $\lim _{x \rightarrow 1} \frac{f(x)-1}{x-1}=1$, 若函数 $u=f(r)$ 满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$, 试求 $f(r)$ 的表达式.



设区域 $D: 0 \leqslant x \leqslant 2,|y| \leqslant x$, 函数 $f(x, y)=\max _{-1 \leqslant \leqslant \leqslant 3}\left(t^2-2 x t+y^3\right)$, 计算二重积分 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$.



求二重积分 $\iint_D \frac{\mathrm{d} \sigma}{\sqrt{x+y+4}}$, 其中
$$
D=\{(x, y):|x|+|y| \leq 1\} .
$$



交换二次积分 $I=\int_0^{\sqrt{\pi}} \mathrm{d} x \int_x^{\sqrt{\pi}} \sin y^2 \mathrm{~d} y$ 的次序, 并且求出 $I$ 的值.



计算二重积分 $\iint_D \frac{x+y}{x^2+y^2} d x d y$, 其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 1, x+y \geq 1\right\}$ 。



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。