查看原题
设二重积分 $I_1=\iint_D \frac{x+y-1}{4} \mathrm{~d} x \mathrm{~d} y, I_2=\iint_D\left(\frac{x+y-1}{4}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D\left(\frac{x+y-1}{4}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其 中 $D=\left\{(x, y) \mid(x-2)^2+(y-1)^2 \leqslant 2\right\}$, 则 $I_1, I_2, I_3$ 的大小关系为
A. $I_1 < I_2 < I_3$.     B. $I_3 < I_2 < I_1$.     C. $I_3 < I_1 < I_2$.     D. $I_2 < I_3 < I_1$.         
不再提醒