大学数学测验题

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
4.本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 10 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $y=y(x)$ 是微分方程 $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$ 的解, 在 $x=0$ 处 $y(x)$ 取得极值 4 , 且 $y^{\prime \prime}(0)=$ 0 , 则 $y(x)=$
$\text{A.}$ $\left(3-2 x^2\right) \mathrm{e}^x+\mathrm{e}^{-x}$. $\text{B.}$ $3 \mathrm{e}^x+x \mathrm{e}^{-x}$. $\text{C.}$ $(3-2 x) \mathrm{e}^x+\mathrm{e}^{-x}$. $\text{D.}$ $\mathrm{e}^x+(3-2 x) \mathrm{e}^{-x}$.

设 $\boldsymbol{A}$ 为 4 阶矩阵, $r(\boldsymbol{A})=2, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 为 $\boldsymbol{A} \boldsymbol{X}=\mathbf{0}$ 的两个线性无关解, $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 为 $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{b}$ 的特解,下列选项中可作为 $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{b}$ 的通解的是
$\text{A.}$ $k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\beta}_2-\boldsymbol{\beta}_1\right)+\boldsymbol{\beta}_1$ $\text{B.}$ $k_1\left(\boldsymbol{\alpha}_2-\boldsymbol{\alpha}_1\right)+k_2\left(\boldsymbol{\beta}_2-\boldsymbol{\beta}_1\right)+\boldsymbol{\beta}_1$ $\text{C.}$ $k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\alpha}_2-\boldsymbol{\alpha}_1\right)+\frac{\boldsymbol{\beta}_2-\boldsymbol{\beta}_1}{2}$ $\text{D.}$ $k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\alpha}_2-\boldsymbol{\alpha}_1\right)+\frac{\boldsymbol{\beta}_1+\boldsymbol{\beta}_2}{2}$

设 $X_1 \sim N(1,1), X_2 \sim N(2,4)$, 又 $X_3 \sim\left(\begin{array}{cc}0 & 1 \\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$, 且 $X_1, X_2, X_3$ 相互独立, $Z=\left(X_1-1\right) X_3+\left(X_2-2\right)\left(1-X_3\right)$, 则 $P\{Z \geqslant 0\}=$.
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{1}{3}$ $\text{C.}$ $\frac{1}{2}$ $\text{D.}$ $\frac{2}{3}$

设 $I_1=\int_0^\pi \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_2=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_3=\int_\pi^{2 \pi} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_2 < I_3 < I_1$. $\text{D.}$ $I_2 < I_1 < I_3$.

设 $D_k$ 是区域 $D=\{(x, y)|| x|+| y \mid \leqslant \mathrm{e}\}$ 在第 $k$ 象限的部分, 记 $I_k=\iint_{D_k} \ln \frac{3+y}{3+x} \mathrm{~d} x \mathrm{~d} y$,则 $\max _{1 \leqslant k \leqslant 4}\left\{I_k\right\}=$
$\text{A.}$ $I_1$. $\text{B.}$ $I_2$. $\text{C.}$ $I_3$. $\text{D.}$ $I_4$.

设总体 $X$ 的分布律为 $P\left\{X=(-1)^n n+p\right\}=\frac{1}{n(n+1)}, n=1,2, \cdots$, 其中 $p$ 为未知参数, $X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, $\bar{X}$ 为样本均值, 则 $p$ 的矩估计量 $\hat{p}=$
$\text{A.}$ $\bar{X}-\ln 2$. $\text{B.}$ $\bar{X}+\ln 2$. $\text{C.}$ $\bar{X}-\ln 2+1$. $\text{D.}$ $\bar{X}+\ln 2-1$.

设函数 $z=x y f\left(\frac{y}{x}\right)$, 其中 $f(u)$ 可导, 若 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=x y(\ln y-\ln x)$, 则
$\text{A.}$ $f(1)=\frac{1}{2}, f^{\prime}(1)=0$ $\text{B.}$ $f(1)=0, f^{\prime}(1)=\frac{1}{2}$ $\text{C.}$ $f(1)=\frac{1}{2}, f^{\prime}(1)=1$ $\text{D.}$ $f(1)=0, f^{\prime}(1)=1$

设 $f(x)$ 是周期为 $2 \pi$ 的周期函数, 它在区间 $(-\pi, \pi]$ 上的表达式是 $f(x)=x+x^2$. 若其傅里叶 (Fourier) 级数为 $S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)$, 则
$\text{A.}$ $b_3=\frac{2}{3}, S(3 \pi)=\pi^2$. $\text{B.}$ $b_3=\frac{4}{3}, S(3 \pi)=\pi$. $\text{C.}$ $b_3=\frac{2}{3}, S(3 \pi)=\pi$. $\text{D.}$ $b_3=-\frac{2}{3}, S(3 \pi)=\pi^2$.

设 $\boldsymbol{A}$ 是 $\boldsymbol{n}$ 阶方阵, 满足 $\boldsymbol{A}^{\boldsymbol{m}}=\boldsymbol{E}$, 其中 $\boldsymbol{m}$ 为正整数. $\boldsymbol{B}=\left(\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 n} \\ A_{21} & A_{22} & \cdots & A_{2 n} \\ \vdots & \vdots & & \vdots \\ A_{n 1} & A_{n 2} & \cdots & A_{n n}\end{array}\right)$, 其中 $A_{i j}$ 是 $A$中元素 $a_{i j}$ 的代数余子式, 则 $\boldsymbol{B}^{\mathbf{m}}=$
$\text{A.}$ $\left(\boldsymbol{A}^{\mathrm{T}}\right)^{-1}$. $\text{B.}$ $\boldsymbol{A}$. $\text{C.}$ $\boldsymbol{E}$. $\text{D.}$ $\boldsymbol{O}$.

二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $(X, Y)$ 服从二维正态分布, 其概率密度为
$$
f(x, y)=\frac{1}{2 \pi \times 10} \cdot \mathrm{e}^{-\frac{1}{2}\left(\frac{x^2}{10}+\frac{y^2}{10}\right)},-\infty < x < +\infty,-\infty < y < +\infty,
$$
则概率 $P\{X < Y\}=$


已知 $D=\left|\begin{array}{cccc}1 & -1 & 3 & 0 \\ -2 & 0 & 4 & 1 \\ 3 & 4 & -1 & 7 \\ 4 & -3 & 5 & 9\end{array}\right|, A_{\imath j}(i, j=1,2,3,4)$ 为 $D$ 的代数余子式, 则 $3 A_{41}+4 A_{42}-A_{43}+7 A_{44}=$


设 $f(x)$ 连续, 且当 $x \rightarrow 0$ 时 $F(x)=\int_0^x\left(x^2+1-\cos t\right) f(t) \mathrm{d} t$ 是与 $x^3$ 等价的无穷小, 则 $f(0)=$


袋中有 4 个球, 其中有 2 个白球和 2 个黑球, 从中任意取出 2 个球, 如果取出的 2 个球中恰好是 1 个白球和 1 个黑球就停止试验, 否则将这 2 个球放回袋中重新抽取 2 个球, 直到取到 1 个白球和 1 个黑球为止. 用 $X$ 表示抽取次数, 则数学期望 $E X=$


若二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+4 x_2^2+2 x_3^2+4 t x_1 x_2+2 t x_1 x_3+2 x_2 x_3$ 是正定的, 则 $t$ 的取值为


三、解答题 ( 共 6 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设总体 $X$ 的概率密度为
(f) $f(x ; \sigma)=\frac{1}{2 \sigma} \mathrm{e}^{-\frac{|x|}{\sigma}},-\infty < x < +\infty$
其中 $\sigma \in(0,+\infty)$ 为末知参数, $X_1, X_2, \cdots, X_n$ 来自总体 $X$ 的简单随机样本.
(1)求 $\sigma$ 的最大似然估计量 $\hat{\sigma}$;
(2)求 $E(\hat{\sigma})$ 和 $D(\hat{\sigma})$.



设函数 $f(x)$ 在区间 $[0,2]$ 上具有连续导数,且
$$
f(0)=f(2)=0, M=\max _{x \in[0,2]}\{|f(x)|\} .
$$
证明: (1) 存在 $\xi \in(0,2)$ ,使得 $\left|f^{\prime}(\xi)\right| \geq M$ ;
(2) 若对任意的 $x \in(0,2),\left|f^{\prime}(x)\right| \leq M$ ,则 $M=0$.



计算不定积分 $\int \frac{x \ln \left(x+\sqrt{1+x^2}\right)}{\left(1-x^2\right)^2} \mathrm{~d} x$.



若二元函数 $f(u, v)$ 对每个变量都具有二阶连续偏导数, 并且满足 $u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}=4 f(u, v)$, 并且 满足 $\frac{\partial^2 f}{\partial u^2}+\frac{\partial^2 f}{\partial v^2}=u^2+v^2$ 。
(1) 求证: $\left\{\begin{array}{l}u^2 \frac{\partial^2 f}{\partial u^2}+2 u v \frac{\partial^2 f}{\partial u \partial v}+v^2 \frac{\partial^2 f}{\partial v^2}=12 f(u, v) \\ v^2 \frac{\partial^2 f}{\partial u^2}-2 u v \frac{\partial^2 f}{\partial u \partial v}+u^2 \frac{\partial^2 f}{\partial v^2}=\left(u^2+v^2\right)^2-12 f(u, v)\end{array}\right.$
(2) 记 $g(x, y)=f\left(\mathrm{e}^{\lambda x} \cos y, \mathrm{e}^{\lambda x} \sin y\right)$, 其中 $\lambda$ 是一个常数, 求解 $\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$ 。



设 $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ -1 & a & b \\ 2 & c & -2\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 2 & d_1 & 1 \\ d_2 & d_3 & d_4\end{array}\right)$ 且 $\boldsymbol{A B}=\boldsymbol{O}$.
(I) 求常数 $a, b, c$;
(II) 判断 $\boldsymbol{A}$ 是否可相似对角化, 若 $\boldsymbol{A}$ 可相似对角化,则求可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}$ 为对角矩阵, 反之说明理由.



设曲线 $y=3 a x^2+2 b x+\ln c$ 经过 $(0,0)$ 点, 且当 $0 \leqslant x \leqslant 1$ 时 $y \geqslant 0$. 设该曲线与直线 $x=1, x$ 轴所围图形的平面图形 $D$ 的面积为 1 . 试求常数 $a, b, c$ 的值, 使得 $D$ 绕 $x$ 轴一周后, 所得旋转体的体积最小.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。