设函数 $y=y(x)$ 是微分方程 $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$ 的解, 在 $x=0$ 处 $y(x)$ 取得极值 4 , 且 $y^{\prime \prime}(0)=$ 0 , 则 $y(x)=$
$\text{A.}$ $\left(3-2 x^2\right) \mathrm{e}^x+\mathrm{e}^{-x}$.
$\text{B.}$ $3 \mathrm{e}^x+x \mathrm{e}^{-x}$.
$\text{C.}$ $(3-2 x) \mathrm{e}^x+\mathrm{e}^{-x}$.
$\text{D.}$ $\mathrm{e}^x+(3-2 x) \mathrm{e}^{-x}$.