查看原题
设 $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 2 & -1 \\ -1 & a & b \\ 2 & c & -2\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 2 & d_1 & 1 \\ d_2 & d_3 & d_4\end{array}\right)$ 且 $\boldsymbol{A B}=\boldsymbol{O}$.
(I) 求常数 $a, b, c$;
(II) 判断 $\boldsymbol{A}$ 是否可相似对角化, 若 $\boldsymbol{A}$ 可相似对角化,则求可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}$ 为对角矩阵, 反之说明理由.
                        
不再提醒