单选题 (共 8 题 ),每题只有一个选项正确
曲线 $y=(x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是
$\text{A.}$ $(1,0)$
$\text{B.}$ $(2,0)$
$\text{C.}$ $(3,0)$
$\text{D.}$ $(4,0)$
设 $\left\{a_n\right\}$ 单调减少, $\lim _{n \rightarrow \infty} a_n=0, S_n=\sum_{k=1}^n a_k(n=1,2, \cdots)$无界,则幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 的收敛域为
$\text{A.}$ $(-1,1]$
$\text{B.}$ $[-1,1)$
$\text{C.}$ $[0,2)$
$\text{D.}$ $(0,2]$
设函数 $f(x)$ 具有二阶连续导数,且 $f(x)>0 , f^{\prime}(0)=0$ ,则函数 $z=f(x) \ln f(y)$ 在点 $(0,0)$ 处取得极小值的一个充分条件是
$\text{A.}$ $f(0)>1, f^{\prime \prime}(0)>0$
$\text{B.}$ $f(0)>1, \quad f^{\prime \prime}(0) < 0$
$\text{C.}$ $f(0) < 1, f^{\prime \prime}(0)>0$
$\text{D.}$ $f(0) < 1, \quad f^{\prime \prime}(0) < 0$
设 $I=\int_0^{\frac{\pi}{4}} \ln \sin x \mathrm{~d} x , J=\int_0^{\frac{\pi}{4}} \ln \cot x \mathrm{~d} x$ , $K=\int_0^{\frac{\pi}{4}} \ln \cos x \mathrm{~d} x$ ,则 $I, J, K$ 的大小关系是
$\text{A.}$ $I < J < K$
$\text{B.}$ $I < K < J$
$\text{C.}$ $J < I < K$
$\text{D.}$ $K < J < I$
设 $\boldsymbol{A}$ 为 3 阶矩阵,将 $\boldsymbol{A}$ 的第 2 列加到第 1 列得矩阵 $B$ ,再交换 $B$ 的第 2 行与第 3 行得单位矩阵,记 $P_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ , $P_2=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, 则 $A=(\quad)$
$\text{A.}$ $P_1 P_2$
$\text{B.}$ $P_1^{-1} P_2$
$\text{C.}$ $P_2 P_1$
$\text{D.}$ $P_2 P_1^{-1}$
设 $A=\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4\right)$ 是 4 阶矩阵、 $A^*$ 为 $A$ 的伴随矩阵,若 $(1,0,1,0)^T$ 是方程组 $A x=0$ 的一个基础解系,则 $A^* x=0$的基础解系可为
$\text{A.}$ $\alpha_1, \alpha_3$
$\text{B.}$ $\alpha_1, \alpha_2$
$\text{C.}$ $\alpha_1, \alpha_2, \alpha_3$
$\text{D.}$ $\alpha_2, \alpha_3, \alpha_4$
设 $F_1(x) , F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ , $f_2(x)$ 是连续函数,则必为概率密度的是
$\text{A.}$ $f_1(x) f_2(x)$
$\text{B.}$ $2 f_2(x) F_1(x)$
$\text{C.}$ $f_1(x) F_2(x)$
$\text{D.}$ $f_1(x) F_2(x)+f_2(x) F_1(x)$
设随机变量 $X$ 与 $Y$ 相互独立,且 $E(X)$ 与 $E(Y)$ 存在,记 $U=\max \{X, Y\} , V=\min \{X, Y\}$ ,则 $E(U V)=$
$\text{A.}$ $E(U) \cdot E(V)$
$\text{B.}$ $E(X) \cdot E(Y)$.
$\text{C.}$ ${E}({U}) \cdot {E}({Y})$
$\text{D.}$ $E(X) \cdot E(V)$.
填空题 (共 6 题 ),请把答案直接填写在答题纸上
曲线 $y=\int_0^x \tan t \mathrm{~d} t\left(0 \leq x \leq \frac{\pi}{4}\right)$ 的弧长 $s=$
微分方程 $y^{\prime}+y=e^{-x} \cos x$ 满足条件 $y(0)=0$ 的解为 $y=$
设函数 $F(x, y)=\int_0^{x y} \frac{\sin t}{1+t^2} \mathrm{~d} t$ ,则
$$
\left.\frac{\partial^2 F}{\partial x^2}\right|_{\substack{x=0 \\ y=2}}=
$$
设 $L$ 是柱面方程 $x^2+y^2=1$ 与平面 $z=x+y$ 的交线,从 $z$ 轴正向往 $z$ 轴负向看去为逆时针方向,则曲线积分
$$
\oint_L x z \mathrm{~d} x+x \mathrm{~d} y+\frac{y^2}{2} \mathrm{~d} z=
$$
若二次曲面的方程
$$
x^2+3 y^2+z^2+2 a x y+2 x z+2 y z=4,
$$
经过正交变换化为 $y_1^2+4 z_1^2=4$ ,则 $a=$
设二维随机变量 $(X, Y)$ 服从正态分布 $N\left(\mu, \mu: \sigma^2, \sigma^2: 0\right)$ ,则 $E\left(X Y^2\right)=$
解答题 (共 9 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{x \rightarrow 0}\left[\frac{\ln (1+x)}{x}\right]^{\frac{1}{e^x-1}}$.
设函数 $z=f(x y, y g(x))$ ,其中函数 $f$ 具有二阶连续偏导数,函数 $g(x)$ 可导,且在 $x=1$ 处取得极值 $g(1)=1$ ,求
$$
\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{\substack{x=1 \\ y=1}} \text {. }
$$
求方程 $k \arctan x-x=0$ 不同实根的个数,其中 $k$ 为参数.
(1) 证明:对任意的正整数 $n$ ,都有
$$
\frac{1}{n+1} < \ln \left(1+\frac{1}{n}\right) < \frac{1}{n} \text {. }
$$
(2) 设 $a_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n(n=1,2, \cdots)$ ,证明数列 $\left\{a_n\right\}$ 收敛.
已知函数 $f(x, y)$ 具有二阶连续偏导数,且 $f(1, y)=0$ , $f(x, 1)=0$ , $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y=a$ ,其中
$$
D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\} ,
$$
计算二重积分 $I=\iint_D x y f_{x y}^{\prime \prime}(x, y) \mathrm{d} x \mathrm{~d} y$.
设向量组 $\alpha_1=(1,0,1)^T , \alpha_2=(0,1,1)^T , \quad \alpha_3=(1,3,5)^T$不能由向量组
$$
\beta_1=(1,1,1)^T, \beta_2=(1,2,3)^T, \quad \beta_3=(3,4, a)^T
$$
线性表示.
(1) 求 $a$ 的值;
(2) 将 $\beta_1, \beta_2, \beta_3$ 由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.
设 $\boldsymbol{A}$ 为三阶实对称矩阵, $\boldsymbol{A}$ 的秩 $r(A)=2$ ,且
$$
A\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right) \text {. }
$$
(1)求 $\boldsymbol{A}$ 的特征值与特征向量;
(2)求矩阵 $\boldsymbol{A}$.
设随机变量 $X$ 与 $Y$ 的概率分布分别为
且 $P\left\{X^2=Y^2\right\}=1$.
(1) 求二维随机变量 $(X, Y)$ 的概率分布;
(2) 求 $Z=X Y$ 的概率分布.
(3) 求 $X$ 与 $Y$ 的相关系数 $\rho_{X Y}$.
设 $X_1, X_2, \cdots, X_n$ 为来自正态总体 $N\left(\mu_0, \sigma^2\right)$ 的简单随机样本,其中 $\mu_0$ 已知, $\sigma^2>0$ 未知. $\bar{X}$ 和 $S^2$ 分别表示样本均值和样本方差.
(1) 求参数 $\sigma^2$ 的最大似然估计量 $\hat{\sigma}^2$;
(2) 计算 $E\left(\hat{\sigma}^2\right)$ 和 $D\left(\hat{\sigma}^2\right)$.