科数网
数学试题
数学试卷
能力测评
会员组卷
在线学习
电子教材
手机刷题
VIP
写笔记
考研数学版
试题篮
0
登录
微信扫码登录
手机号登录
手机版
【35002】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设总体 $X$ 与 $Y$ 都服从正态分布 $N\left(0, \sigma^2\right), X_1, \cdots, X_n$ 与 $Y_1, \cdots, Y_n$ 分别来自总体 $X$ 与 $Y$ 容量都为 $n$ 的两个相互独立简单随机样本,样本均值和方差分别为 $\bar{X}$ , $S_X^2, \bar{Y}, S_Y^2$ 。则
【35001】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
假设随机变量 $X \sim N\left(1,2^2\right), X_1, X_2, \cdots, X_{100}$ 是来自总体 $X$ 的简单随机样本, $\bar{X}$ 是样本均值,已知 $Y=a \bar{X}+b \sim N(0,1)$ ,则
【35000】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设总体 $X$ 与 $Y$ 都服从正态分布 $N\left(0, \sigma^2\right)$ ,已知 $X_1, \cdots, X_m$ 与 $Y_1, \cdots, Y_n$ 是分别来自总体 $X$ 与 $Y$ 两个相互独立的简单随机样本,统计量 $Y=\frac{2\left(X_1+\cdots+X_m\right)}{\sqrt{Y_1^2+\cdots+Y_n^2}}$服从 $t(n)$ 分布,则 $\frac{m}{n}$ 等于
【34999】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设总体 $X$ 服从正态分布 $N\left(0, \sigma^2\right), X_1, \cdots, X_{10}$ 是来自总体 $X$ 的简单随机样本,统计量 $Y=\frac{4\left(X_1^2+\cdots+X_i^2\right)}{X_{i+1}^2+\cdots+X_{10}^2}(1<i<10)$ 服从 $F$ 分布,则 $i$ 等于
【34998】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
$X_1, \cdots, X_n$ 是取自正态总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, $\bar{X}$ 为样本均值,$S^2$ 为样本方差,则可以作出服从自由度为 $n$ 的 $\chi^2$ 分布的随机变量为
【34997】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
假设 $X, X_1, X_2, \cdots, X_{10}$ 是来自正态总体 $N\left(0, \sigma^2\right)$ 的简单随机样本,$Y^2= \frac{1}{10} \sum_{i=1}^{10} X_i^2$ ,则
【34996】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设 $X_1, X_2, X_3, X_4$ 为来自总体 $N\left(1, \sigma^2\right)(\sigma>0)$ 的简单随机样本,则统计量 $\frac{X_1-X_2}{\left|X_3+X_4-2\right|}$ 的分布为
【34995】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设 $X_1, X_2, X_3$ 为来自正态总体 $N\left(0, \sigma^2\right)$ 的简单随机样本,则统计量 $S=\frac{X_1-X_2}{\sqrt{2}\left|X_3\right|}$服从的分布为
【34994】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设 $X_1, X_2, \cdots, X_n(n \geqslant 2)$ 为来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X}= \frac{1}{n} \sum_{i=1}^n X_i$ ,则下列结论不正确的是
【34993】 【
考虫2024《统计量和抽样分布》入门教程
】 单选题
设随机变量 $X$ 和 $Y$ 都服从标准正态分布,则
...
21
22
23
24
25
...