单选题 (共 10 题 ),每题只有一个选项正确
设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$
$\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$
$\text{C.}$ $f^{\prime}(0)=1$
$\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$
已知 $f(x)=\max \left\{1, x^2\right\}$, 则 $\int f(x) d x= $
$\text{A.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{2}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$
$\text{B.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C, \quad x>1\end{array}\right.$
$\text{C.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C_1, \quad x < -1 \\ x+C_2, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C_3, \quad x>1\end{array}\right.$
$\text{D.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{4}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$
设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$
$\text{B.}$ $(-1,1,2)$
$\text{C.}$ $(1,1,2)$
$\text{D.}$ $(-1,-1,2)$
设 $n$ 阶矩阵 $A, B$ 满足 $A A^T=E, B B^T=E$, 其中 $E$ 是 $n$ 阶单位矩阵, 则
$\text{A.}$ $|A+B|=|A|+|B|$ 总成立
$\text{B.}$ $|A+B|=|A|+|B|$ 总不成立
$\text{C.}$ 当 $|A||B| < 0$ 时, $|A+B|=|A|+|B|$ 成立
$\text{D.}$ 当 $|A||B|>0$ 时, $|A+B|=|A|+|B|$ 成立
设 $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & a & 1 \\ 1 & 2 & 1\end{array}\right)$, 且 $r(B)=2, r(A B)=1$, 则
$\text{A.}$ $r\left(\begin{array}{ll}A & O \\ A & B\end{array}\right)=3$
$\text{B.}$ $r\left(\begin{array}{cc}A & O \\ O & B^*\end{array}\right)=3$
$\text{C.}$ $r\left(\left(\begin{array}{cc}A^* & B \\ O & B^*\end{array}\right)=3\right.$
$\text{D.}$ $\left.r\left(\begin{array}{ll}A & B^* \\ O & B\end{array}\right)\right)=3$
$n$ 阶矩阵 $A=\left(\alpha_1, \alpha_2, \cdots, \alpha_n\right), B=\left(\beta_1, \beta_2, \cdots, \beta_n\right)$, 矩阵 $C_1=A B, C_2=A+B, C_3=(A, B)$, 则下列命题一定正确的是( )
(1)矩阵 $C_1$ 的列向量组可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示.
(2)矩阵 $C_1$ 的列向量组可由 $\beta_1, \beta_2, \cdots, \beta_n$ 线性表示.
(3)矩阵 $C_2$ 的列向量组可由矩阵 $C_3$ 的列向量线性表示.
(4) 矩阵的秩满足 $r\left(C_2\right) \leq r\left(C_3\right) \leq r(A)+r(B)$.
$\text{A.}$ (1)(3)(4)
$\text{B.}$ (2)(3)(4)
$\text{C.}$ (1)(4)
$\text{D.}$ (3)(4)
设 $X \sim N(1,4), Y \sim B\left(3, \frac{1}{4}\right)$, 且 $X, Y$ 相互独立, 则 $P\{X Y+1>X+Y\}=$
$\text{A.}$ $\frac{1}{2}$
$\text{B.}$ $\frac{37}{128}$
$\text{C.}$ $\frac{1}{4}$
$\text{D.}$ $\frac{37}{64}$
设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right)(\sigma>0), X_1, X_2, \cdots, X_{2 n}(n \geq 2)$ 为来自该总体的简单随机样本, 其样本均值为 $\bar{X}=\frac{1}{2 n} \sum_{i=1}^{2 n} X_i$. 记统计量
$$
Y_1=\sum_{i=1}^{2 n}\left(X_i-\bar{X}\right)^2, Y_2=\sum_{i=1}^n\left(X_i-X_{n+i}\right)^2, Y_3=\sum_{i=1}^n\left(X_i+X_{n+i}-2 \bar{X}\right)^2 \text {, }
$$
则这 3 个统计量的数学期望 $E\left(Y_1\right), E\left(Y_2\right), E\left(Y_3\right)$ 的大小关系为
$\text{A.}$ $E\left(Y_1\right)>E\left(Y_2\right)>E\left(Y_3\right)$
$\text{B.}$ $E\left(Y_1\right)>E\left(Y_3\right)>E\left(Y_2\right)$
$\text{C.}$ $E\left(Y_3\right)>E\left(Y_1\right)>E\left(Y_2\right)$
$\text{D.}$ $E\left(Y_2\right)>E\left(Y_1\right)>E\left(Y_3\right)$
设总体 $X \sim N(\mu, 1), Y \sim N(\mu, 1)$, 且 $X, Y$ 相互独立, $X_1, X_2, \cdots, X_n$ 与 $Y_1, Y_2, \cdots, Y_n$ 分别来自总体 $X, Y$ 的简单随机样本, 设 $X=\frac{1}{n} \sum_{i=1}^n X_i, Y=\frac{1}{n} \sum_{i=1}^n Y_i, S_X^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$, $S_Y^2=\frac{1}{n-1} \sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2$, 则 $\frac{\sqrt{n}(\bar{X}-\bar{Y})}{\sqrt{S_X^2+S_Y^2}}$ 服从
$\text{A.}$ $t(n-1)$
$\text{B.}$ $t(n)$
$\text{C.}$ $t(2 n)$
$\text{D.}$ $t(2 n-2)$
填空题 (共 6 题 ),请把答案直接填写在答题纸上
设曲线 $\Gamma$ 的极坐标方程为 $r=\sin 2 \theta\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, 则 $\Gamma$ 围成有界区域的面积为
设函数 $y=f(x)$ 二阶可导,且满足 $y^{\prime}=(5-y) y^a$, 其中常数 $a>0$, 点 $\left(x_0, 3\right)$ 为曲线 $y=f(x)$ 的拐点, 则 $a=$
微分方程 $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x}$ 的通解为
已知 $f(x, y)=x y+x^2 y \iint_D x y f(x, y) \mathrm{d} x \mathrm{~d} y$, 其中 $D: y=x, y=0, x=1$ 所围成区域, 则
$$
\frac{\partial^2 f}{\partial x \partial y}=
$$
设向量组 $\alpha_1=(1,1,0)^{\mathrm{T}}, \alpha_2=(5,3,2)^{\mathrm{T}}, \alpha_3=(1,3,-1)^{\mathrm{T}}, \alpha_4=(-2,2,-3)^{\mathrm{T}} . A$ 是三阶矩阵, 且. $A \alpha_1=\alpha_2, A \alpha_2=\alpha_3, A \alpha_3=\alpha_4$, 则 $A \alpha_4=$
将编号为 $1,2,3$ 的三个球随机放入编号为 $1,2,3$ 的三个盒子中,每盒仅放一个球,令
$$
X_i=\left\{\begin{array}{ll}
1, & \text { 第 } i \text { 号球放第 } i \text { 号盒中, } \\
0, & \text { 其他 }
\end{array}(i=1,2),\right.
$$
则 $\rho_{X_1 X_2}=$
解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{n \rightarrow \infty}\left(b^{\frac{1}{n}}-1\right) \sum_{i=0}^{n-1} b^{\frac{i}{n}} \sin b^{\frac{2 i+1}{2 n}}(b>1)$.
设 $y^2 \mathrm{~d} x+(2 x y+1) \mathrm{d} y$ 是函数 $f(x, y)$ 的全微分, 其中 $f(0,0)=0$, 求 $f(x, y)$, 并计算曲面积分 $I=\iint_{\Sigma} z f(x, y) \mathrm{d} S$, 其中 $\Sigma$ 是椎面 $z=\sqrt{x^2+y^2}$ 被柱面 $x^2+(y-1)^2=1$ 所截下的有限部分.
若 $f(x)$ 为 $[0,1]$ 上的单调增加的连续函数, 证明:
$$
\frac{\int_0^1 x f^3(x) d x}{\int_0^1 x f^2(x) d x} \geq \frac{\int_0^1 f^3(x) d x}{\int_0^1 f^2(x) d x} .
$$
(I) 求 $y=x \sin x$ 在 $[0, n \pi]$ ( $n$ 为正整数)上与 $x$ 轴所围的面积 $A_n$;
(II) 在(I)的基础上, 求幂级数 $\sum_{n=1}^{\infty} \frac{A_n}{2^n} x^n$ 的收敛域及和函数.
三阶矩阵 $A=\left(a_{i j}\right)_{3 \times 3}$ 与 $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 10\end{array}\right)$ 满足 $A B=O$. 已知 $a_{22}=-3$, 且 $(1,3,2)^T$ 为矩阵 $A$ 的特征向量.
(I) 求矩阵 $A$ 的全部特征值和特征向量;
(II) 求矩阵 $A$ 以及 $(E+A)^{2020}$;
(III) 已知 $\beta=(2,6,4)^T$, 求线性方程组 $A x=\beta$ 的通解.
设总体 $(X, Y)$ 的分布函数为
$$
F(x, y)= \begin{cases}0, & x < 0 \text { 或 } y < \theta, \\ p\left[1-\mathrm{e}^{-(y-\theta)}\right], & 0 \leqslant x < 1, y \geqslant \theta, \\ 1-\mathrm{e}^{-(y-\theta)}, & x \geqslant 1, y \geqslant \theta .\end{cases}
$$
其中 $p, \theta$ 为末知参数, 且 $0 < p < 1$.
(I) 求 $X$ 的概率分布和 $Y$ 的概率密度, 并判别 $X$ 和 $Y$ 的独立性;
(II) 求 $Z=X+Y$ 的概率密度 $f_Z(z)$.