2014-2017数二错题集

数 学



单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 具有二阶导数, $g(x)=f(0)(1-x)+f(1) x$ ,则在 $[0,1]$ 上
$\text{A.}$ 当 $f^{\prime}(x) \geq 0$ 时, $f(x) \geq g(x)$ $\text{B.}$ 当 $f^{\prime}(x) \geq 0$ 时, $f(x) \leq g(x)$ $\text{C.}$ 当 $f^{\prime \prime}(x) \geq 0$ 时, $f(x) \geq g(x)$ $\text{D.}$ 当 $f^{\prime \prime}(x) \geq 0$ 时, $f(x) \leq g(x)$

曲线 $\left\{\begin{array}{l}x=t^2+7 \\ y=t^2+4 t+1\end{array}\right.$ 上对应于 $t=1$ 的点处的曲率半径是
$\text{A.}$ $\frac{\sqrt{10}}{50}$ $\text{B.}$ $\frac{\sqrt{10}}{100}$ $\text{C.}$ $10 \sqrt{10}$ $\text{D.}$ $5 \sqrt{10}$

设函数 $u(x, y)$ 在有界闭区域 $D$ 上连续,在 D 的内部具有 2 阶连续偏导数,且满足
$$
\frac{\partial^2 u}{\partial x \partial y} \neq 0 \text { 及 } \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 \text { ,则( ) }
$$
$\text{A.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的边界上取得 $\text{B.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的内部取得 $\text{C.}$ $u(x, y)$ 的最大值在 $D$ 的内部取得,最小值在 $D$ 的边界上取得 $\text{D.}$ $u(x, y)$ 的最小值在 $D$ 的内部取得,最大值在 $D$ 的边界上取得

行列式 $\left|\begin{array}{llll}0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d\end{array}\right|=$
$\text{A.}$ $(a d-b c)^2$ $\text{B.}$ $-(a d-b c)^2$ $\text{C.}$ $a^2 d^2-b^2 c^2$ $\text{D.}$ $b^2 c^2-a^2 d^2$

设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维向量,则对任意的常数 $a, b$ ,向量 $\alpha_1+a \alpha_3, \alpha_2+b \alpha_3$ 线性无关是向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
$\text{A.}$ 必要非充分条件 $\text{B.}$ 充分非必要条件 $\text{C.}$ 充分必要条件 $\text{D.}$ 非充分非必要条件

函数 $f(x)=\lim _{t \rightarrow 0}\left(1+\frac{\sin t}{x}\right)^{\frac{x^2}{t}}$ 在 $(-\infty,+\infty)$ 内
$\text{A.}$ 连续 $\text{B.}$ 有可去间断点 $\text{C.}$ 有跳跃间断点 $\text{D.}$ 有无穷间断点

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。