单选题 (共 3 题 ),每题只有一个选项正确
设函数 $f(x, y)$ 在点 $(0,0)$ 处可微, $f(0,0)=0, n=\left.\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right)\right|_{(0,0)}$ 且非零向量 $d$ 与 $n$ 垂直,则()
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \cdot(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{B.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \times(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{d} \cdot(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{D.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{d} \times(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$存在
设 $R$ 为幂级数 $\sum_{n=1}^{\infty} a_n r^n$ 的收敛半径, $r$ 是实数, 则 ( )
$\text{A.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \geq R$
$\text{B.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \leq R$
$\text{C.}$ $|r| \geq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
$\text{D.}$ $|r| \leq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
下列级数中条件收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty}(-1)^n\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
$\text{B.}$ $\sum_{n=2}^{\infty} \frac{(-1)^n+1}{\ln n}$
$\text{C.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \ln (1+n)}$