解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
过抛物线 $y=x^2$ 上的一点 $M_0\left(x_0, y_0\right)$ 作切线, $\left(0 \leq x_0 \leq 1\right)$, 问 $M_0$ 取在何处时,该切线与直线 $x=1$ 和 $x$ 轴所围成的三角形面积最大? 并求最大值.
设 $F(x, y)=x y+\frac{1}{2} y^2$, 曲线 $c$ 的方程为 $3\left(\frac{\partial F}{\partial x}\right)^2+\left(\frac{\partial F}{\partial y}\right)^2=4$, 点 $P$ 为 $c$ 上任一点, 以 $P(x, y), O(0,0), Q(x, 0)$ 三点为顶点的三角形面积记作 $S$, 求面积的最大值.
设 $\varphi(t)$ 具有连续导数, $\varphi(0)=0$. 在全平面内曲线积分
$$
I=\int_L(y-2 x \varphi(x y)) \mathrm{e}^{-x^2-y^2} \mathrm{~d} x+(x-2 y \varphi(x y)) \mathrm{e}^{-x^2-y^2} \mathrm{~d} y
$$
与路径无关.
( I ) 求 $\varphi(t)$;
(II) 设 $L$ 为从 $O(0,0)$ 到 $A(a, a)$ 的一条分段光滑曲线, 计算 $I(a)$;
(III) 求 $I(a)$ 的最值.