试卷11

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 27 题,每小题 5 分,共 50 分,每题只有一个选项正确)
二元函数 $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^2+y^2}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ 在点 $(0,0)$处
$\text{A.}$ 连续,偏导数存在 $\text{B.}$ 连续,偏导数不存在 $\text{C.}$ 不连续,偏导数存在 $\text{D.}$ 不连续,偏导数不存在

设 $f(x, y)$ 在点 $(0,0)$ 附近有定义,且 $f_x^{\prime}(0,0)=3$ , $f_y^{\prime}(0,0)=1$ ,则
$\text{A.}$ $\left.\mathrm{d} z\right|_{(0,0)}=3 \mathrm{~d} x+\mathrm{d} y$ $\text{B.}$ 曲面 $z=f(x, y)$ 在 $(0,0, f(0,0))$ 处的法向量为 $(3,1,1)$ $\text{C.}$ 曲线 $\left\{\begin{array}{l}z=f(x, y) \\ y=0\end{array}\right.$ 在 $(0,0, f(0,0))$ 处的切向量为 $(1,0,3)$ $\text{D.}$ 曲线 $\left\{\begin{array}{l}z=f(x, y) \\ y=0\end{array}\right.$ 在 $(0,0, f(0,0))$ 处的切向量为 $(3,0,1)$

考虑二元函数的下面 4 条性质:
(1) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处连续,
(2) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处的两个偏导数连续,
(3) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处可微,
(4) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处两个偏导数存在.

若用 " $P \Rightarrow Q$ " 表示可由性质 $P$ 推出 $Q$ ,则有
$\text{A.}$ (2) $\Rightarrow$ (3) $\Rightarrow$ (1) $\text{B.}$ (3) $\Rightarrow$ (2) $\Rightarrow$ (1) $\text{C.}$ (3) $\Rightarrow$ (4) $\Rightarrow$ (1) $\text{D.}$ (3) $\Rightarrow$ (1) $\Rightarrow$ (4)

设函数
$$
u(x, y)=\phi(x+y)+\phi(x-y)+\int_{x-y}^{x+y} \psi(t) \mathrm{d} t ,
$$

其中函数 $\phi$ 具有二阶导数, $\psi$ 具有一阶导数,则必有
$\text{A.}$ $\frac{\partial^2 u}{\partial x^2}=-\frac{\partial^2 u}{\partial y^2}$ $\text{B.}$ $\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial y^2}$ $\text{C.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial y^2}$ $\text{D.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial x^2}$

设 $f(x, y)$ 与 $\varphi(x, y)$ 均为可微函数,且 $\varphi_y^{\prime}(x, y) \neq 0$ ,已知 $\left(x_0, y_0\right)$ 是 $f(x, y)$ 在约束条件 $\varphi(x, y)=0$ 下的一个极值点,下列选项正确的是
$\text{A.}$ 若 $f_x^{\prime}\left(x_0, y_0\right)=0$ ,则 $f_y^{\prime}\left(x_0, y_0\right)=0$ $\text{B.}$ 若 $f_x^{\prime}\left(x_0, y_0\right)=0$ ,则 $f_y^{\prime}\left(x_0, y_0\right) \neq 0$ $\text{C.}$ 若 $f_x^{\prime}\left(x_0, y_0\right) \neq 0$ ,则 $f_y^{\prime}\left(x_0, y_0\right)=0$ $\text{D.}$ 若 $f_x^{\prime}\left(x_0, y_0\right) \neq 0$ ,则 $f_y^{\prime}\left(x_0, y_0\right) \neq 0$

已知 $f(x, y)=e^{\sqrt{x^2+y^4}}$ ,则
$\text{A.}$ $f_x^{\prime}(0,0), f_y^{\prime}(0,0)$ 都存在 $\text{B.}$ $f_x^{\prime}(0,0)$ 不存在, $f_y^{\prime}(0,0)$ 存在 $\text{C.}$ $f_x^{\prime}(0,0)$ 不存在, $f_y^{\prime}(0,0)$ 不存在 $\text{D.}$ $f_x^{\prime}(0,0), f_y^{\prime}(0,0)$ 都不存在

若 $f^{\prime \prime}(x)$ 不变号,且曲线 $y=f(x)$ 在点 $(1,1)$ 处的曲率圆为 $x^2+y^2=2$ ,则函数 $f(x)$ 在区间 $(1,2)$ 内
$\text{A.}$ 有极值点,无零点 $\text{B.}$ 无极值点,有零点 $\text{C.}$ 有极值点,有零点 $\text{D.}$ 无极值点,无零点

设函数 $f(x, y)$ 为可微函数,且对任意的 $x, y$ 都有
$$
\frac{\partial(x, y)}{\partial x}>0, \frac{\partial(x, y)}{\partial y} < 0,
$$
则使不等式 $f\left(x_1, y_1\right)>f\left(x_2, y_2\right)$ 成立的一个充分条件是
$\text{A.}$ $x_1>x_2, y_1 < y_2$ $\text{B.}$ $x_1>x_2, y_1>y_2$ $\text{C.}$ $x_1 < x_2, y_1 < y_2$ $\text{D.}$ $x_1 < x_2, y_1>y_2$

设区域 $D$ 由曲线 $y=\sin x, x= \pm \frac{\pi}{2}, y=1$ 围成,则 $\iint_D\left(x^5 y-1\right) \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ $\pi$ $\text{B.}$ 2 $\text{C.}$ -2 $\text{D.}$ -$\pi$

设 $L_1: x^2+y^2=1 , L_2: x^2+y^2=2$ , $L_3: x^2+2 y^2=2, L_4: 2 x^2+y^2=2$ 为四条逆时针方向的平面曲线,记
$$
I_i=\oint_{L_i}\left(y+\frac{y^3}{6}\right) \mathrm{d} x+\left(2 x-\frac{x^3}{3}\right) \mathrm{d} y(i=1,2,3,4) ,
$$

则 $\max \left\{I_1, I_2, I_3, I_4\right\}=$
$\text{A.}$ $I_1$ $\text{B.}$ $I_2$ $\text{C.}$ $I_3$ $\text{D.}$ $I_4$

设函数 $z=\frac{y}{x} f(x y)$ ,其中函数 $f$ 可微,则 $\frac{x}{y} \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=$
$\text{A.}$ $2 y f^{\prime}(x y)$ $\text{B.}$ $-2 y f^{\prime}(x y)$ $\text{C.}$ $\frac{2}{x} f(x y)$ $\text{D.}$ $-\frac{2}{x} f(x y)$

设 $D_k$ 是圆域 $D=\left\{(x, y) \mid x^2+y^2 \leq 1\right\}$ 的第 $k$ 象限的部分,记 $I_k=\iint_{D_k}(y-x) \mathrm{d} x \mathrm{~d} y(k=1,2,3,4)$ ,则
$\text{A.}$ $I_1>0$ $\text{B.}$ $I_2>0$ $\text{C.}$ $I_3>0$ $\text{D.}$ $I_4>0$

设 $D_k$ 是圆域 $D=\left\{(x, y) \mid x^2+y^2 \leq 1\right\}$ 的第 $k$ 象限的部分,记 $I_k=\iint_{D_k}(y-x) \mathrm{d} x \mathrm{~d} y(k=1,2,3,4)$ ,则
$\text{A.}$ $I_1>0$ $\text{B.}$ $I_2>0$ $\text{C.}$ $I_3>0$ $\text{D.}$ $I_4>0$

设 $f(x, y)$ 是连续函数,则 $\int_0^1 \mathrm{~d} y \int_{-\sqrt{1-y^2}}^{1-y} f(x, y) \mathrm{d} x=$
$\text{A.}$ $\int_0^1 \mathrm{~d} x \int_0^{x-1} f(x, y) \mathrm{d} y+\int_{-1}^0 \mathrm{~d} x \int_0^{\sqrt{1-x^2}} f(x, y) \mathrm{d} y$ $\text{B.}$ $\int_0^1 \mathrm{~d} x \int_0^{1-x} f(x, y) \mathrm{d} y+\int_{-1}^0 \mathrm{~d} x \int_{-\sqrt{1-x^2}}^0 f(x, y) \mathrm{d} y$ $\text{C.}$ $\int_0^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{\frac{1}{\cos \theta+\sin \theta}} f(r \cos \theta, r \sin \theta) \mathrm{d} r$+ $ \int_{\frac{\pi}{2}}^\pi \mathrm{d} \theta \int_0^1 f(r \cos \theta, r \sin \theta) \mathrm{d} r$ $\text{D.}$ $\int_0^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{\frac{1}{\cos \theta+\sin \theta}} f(r \cos \theta, r \sin \theta) \mathrm{d} r $+ $\int_{\frac{\pi}{2}}^\pi \mathrm{d} \theta \int_0^1 f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$

设函数 $u(x, y)$ 在有界闭区域 $D$ 上连续,在 D 的内部具有 2 阶连续偏导数,且满足
$$
\frac{\partial^2 u}{\partial x \partial y} \neq 0 \text { 及 } \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0 \text { ,则( ) }
$$
$\text{A.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的边界上取得 $\text{B.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的内部取得 $\text{C.}$ $u(x, y)$ 的最大值在 $D$ 的内部取得,最小值在 $D$ 的边界上取得 $\text{D.}$ $u(x, y)$ 的最小值在 $D$ 的内部取得,最大值在 $D$ 的边界上取得

若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x=\sqrt{3}$ 与 $x=3$ 依次为幂级数 $\sum_{n=1}^{\infty} n a_n(x-1)^n$ 的
$\text{A.}$ 收敛点,收敛点 $\text{B.}$ 收敛点,发散点 $\text{C.}$ 发散点, 收敛点 $\text{D.}$ 发散点,发散点

设 $D$ 是第一象限中曲线 $2 x y=1,4 x y=1$ 与直线 $y=x$ , $y=\sqrt{3} x$ 围成的平面区域,函数 $f(x, y)$ 在 $D$ 上连续,则
$$
\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y=(\quad)
$$
$\text{A.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$ $\text{B.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$ $\text{C.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) \mathrm{d} r$ $\text{D.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) \mathrm{d} r$

下列反常积分中收敛的是
$\text{A.}$ $\int_2^{+\infty} \frac{1}{\sqrt{x}} \mathrm{~d} x$ $\text{B.}$ $\int_2^{+\infty} \frac{\ln x}{x} \mathrm{~d} x$ $\text{C.}$ $\int_2^{+\infty} \frac{1}{x \ln x} \mathrm{~d} x$ $\text{D.}$ $\int_2^{+\infty} \frac{x}{e^x} \mathrm{~d} x$

设 $D$ 是第一象限中曲线 $2 x y=1,4 x y=1$ 与直线 $y=x$ , $y=\sqrt{3} x$ 围成的平面区域,函数 $f(x, y)$ 在 $D$ 上连续,则 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$ $\text{B.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$ $\text{C.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) \mathrm{d} r$ $\text{D.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \mathrm{~d} \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) \mathrm{d} r$

设 $\left\{x_n\right\}$ 是数列,下列命题中不正确的是
$\text{A.}$ 若 $\lim _{n \rightarrow \infty} x_n=a$ ,则 $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=a$ $\text{B.}$ 若 $\lim _{n \rightarrow \infty} x_{2 n}=\lim _{n \rightarrow \infty} x_{2 n+1}=a$ ,则 $\lim _{n \rightarrow \infty} x_n=a$ $\text{C.}$ 若 $\lim _{n \rightarrow \infty} x_n=a$ ,则 $\lim _{n \rightarrow \infty} x_{3 n}=\lim _{n \rightarrow \infty} x_{3 n+1}=a$ $\text{D.}$ 若 $\lim _{n \rightarrow \infty} x_{3 n}=\lim _{n \rightarrow \infty} x_{3 n+1}=a$ ,则 $\lim _{n \rightarrow \infty} x_n=a$

设 $D=\left\{(x, y) \mid x^2+y^2 \leq 2 x, x^2+y^2 \leq 2 y\right\}$ ,函数 $f(x, y)$ 在 $D$ 上连续,则 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y=(\quad)$
$\text{A.}$ $\int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{2 \cos \theta} f( r \cos \theta, r \sin \theta) r \mathrm{~d} r +\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{2 \sin \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r $ $\text{B.}$ $ \int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{2 \sin \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{2 \cos \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r $ $\text{C.}$ $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{2 \cos \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$ $\text{D.}$ $2 \int_0^1 \mathrm{~d} x \int_{1-\sqrt{1-x^2}}^x f(x, y) \mathrm{d} y$

下列级数中发散的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{n}{3^n}$ $\text{B.}$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1+\frac{1}{n}\right)$ $\text{C.}$ $\sum_{n=2}^{\infty} \frac{(-1)^n+1}{\ln n}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

已知函数 $f(x, y)=\frac{e^x}{x-y}$ ,则
$\text{A.}$ $f_x{ }^{\prime}-f_y^{\prime}=0$ $\text{B.}$ $f_x{ }^{\prime}+f_y^{\prime}=0$ $\text{C.}$ $f_x^{\prime}-f_y^{\prime}=f$ $\text{D.}$ $f_x^{\prime}+f_y^{\prime}=f$

级数为 $\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right) \sin (n+k)(k$ 为常数 $)$ ,则该级数
$\text{A.}$ 绝对收敛 $\text{B.}$ 条件收敛 $\text{C.}$ 发散 $\text{D.}$ 收敛性与 $k$ 有关

设 $f(x, y)$ 具有一阶偏导数,且在任意的 $(x, y)$ 都有 $\frac{\partial f(x, y)}{\partial x}>0, \frac{\partial f(x, y)}{\partial y} < 0$ ,则
$\text{A.}$ $f(0,0)>f(1,1)$ $\text{B.}$ $f(0,0) < f(1,1)$ $\text{C.}$ $f(0,1)>f(1,0)$ $\text{D.}$ $f(0,1) < f(1,0)$

二元函数 $z=x y(3-x-y)$ 的极值点
$\text{A.}$ $(0,0)$ $\text{B.}$ $(0,3)$ $\text{C.}$ $(3,0)$ $\text{D.}$ $(1,1)$

$\int_{-1}^0 \mathrm{~d} x \int_{-x}^{2-x^2}(1-x y) \mathrm{d} y+\int_0^1 \mathrm{~d} x \int_x^{2-x^2}(1-x y) \mathrm{d} y=$
$\text{A.}$ $\frac{5}{3}$ $\text{B.}$ $\frac{5}{6}$ $\text{C.}$ $\frac{7}{3}$ $\text{D.}$ $\frac{7}{6}$

二、填空题 (共 31 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
与两直线 $\left\{\begin{array}{l}x=1, \\ y=-1+t \\ z=2+t\end{array}\right.$ 及 $\frac{x+1}{1}=\frac{y+2}{2}=\frac{z-1}{1}$ 都平行, 且过原点的平面方程为


过点 $M(1,2,-1)$ 且与直线 $\left\{\begin{array}{l}x=-t+2 \\ y=3 t-4 \\ z=t-1\end{array}\right.$ 垂直的平面方程是


设 $z=\frac{1}{x} f(x y)+y \varphi(x+y)$ ,其中 $f, \varphi$ 具有二阶连续导数,则 $\frac{\partial^2 z}{\partial x \partial y}=$


设 $z=e^{-x}-f(x-2 y)$ ,且当 $y=0$ 时, $z=x^2$ ,则 $\frac{\partial z}{\partial x}=$


函数 $y=x^{2 x}$ 在区间 $(0,1]$ 上的最小值为


设某商品的收益函数为 $R(p)$ ,收益弹性为 $1+p^3$ ,其中 $p$ 为价格,且 $R(1)=1$ ,则 $R(p)=$


设函数 $F(x, y)=\int_0^{x y} \frac{\sin t}{1+t^2} \mathrm{~d} t$ ,则
$$
\left.\frac{\partial^2 F}{\partial x^2}\right|_{\substack{x=0 \\ y=2}}=
$$


曲线 $y=\int_0^x \tan t \mathrm{~d} t\left(0 \leq x \leq \frac{\pi}{4}\right)$ 的弧长 $s=$


设函数 $z=\left(1+\frac{x}{y}\right)^{\frac{x}{y}}$ ,则 $\left.\mathrm{d} z\right|_{(1,1)}=$


曲线 $y=\sqrt{x^2-1}$ ,直线 $x=2$ 及 $x$ 轴所围成的平面图形绕 $x$ 轴旋转所成的旋转体的体积为


$\left.\operatorname{grad}\left(x y+\frac{z}{y}\right)\right|_{(2,1,1)}=$


设 $z=f\left(\ln x+\frac{1}{y}\right)$ ,其中函数 $f(u)$ 可微,则 $x \frac{\partial z}{\partial x}+y^2 \frac{\partial z}{\partial y}=$


设连续函数 $z=f(x, y)$ 满足
$$
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 1}} \frac{f(x, y)-2 x+y-2}{\sqrt{x^2+(y-1)^2}}=0 ,
$$

则 $\left.\mathrm{d} z\right|_{(0,1)}=$


非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。