考研试卷

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 2 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设在 $[0,1)$ 上 $f(x)$ 二阶可导,且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $f^{\prime}(0) < f^{\prime}(1) < f(1)-f(0)$ $\text{B.}$ $ f^{\prime}(0) < f(1)-f(0) < f^{\prime}(1)$ $\text{C.}$ $f^{\prime}(1) < f^{\prime}(0) < f(1)-f(0)$ $\text{D.}$ $f(1)-f(0) < f^{\prime}(1) < f^{\prime}(0)$

设矩阵 $\boldsymbol{A}=\left(\begin{array}{cccc}1 & -3 & 1 & -2 \\ 2 & -5 & -2 & -2 \\ 0 & -4 & 5 & 1 \\ -3 & 9 & -6 & 7\end{array}\right), M_{3 j}$ 是 $\boldsymbol{A}$ 的第 3 行第 $j$ 列元素的余子式 $(j=1,2,3,1)$. 则 $M_{31}+3 M_{32}-2 M_{33}+2 M_{34}=$
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ -2 $\text{D.}$ -3

二、填空题 (共 2 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 3 阶矩阵 $\boldsymbol{A}^{-1}$ 的特征值为 $1,2,3, A_{11}, A_{22}, A_{33}$ 为 $|\boldsymbol{A}|$ 的代数余子式, 则 $A_{11}+$ $A_{22}+A_{33}=$


求不定积分 $\int \frac{\ln \sin x}{\sin ^2 x} d x$


三、解答题 ( 共 2 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $(X, Y)$ 的联合密度函数为 $f(x, y)=\left\{\begin{array}{ll}y, & 0 < x < 2,0 < y < 1 \\ 0, & \text { 其他 }\end{array}\right.$, 问:
(1) $X, Y$ 独立吗?说明理由;
(2) $E\left(X^2 Y\right)$;
(3) $P(X>Y)$



设可导函数 $ f(x)$ 满足 $f(1)=1$ ,且对 $x \geq 1$ 时,有 $f^{\prime}(x)=\frac{1}{x^2+f^2(x)}$ 。
( I ) 证明: $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限;
(II) 证明: $\lim _{x \rightarrow+\infty} f(x) \leq 1+\frac{\pi}{4}$ 。
附加题 (本题为附加题,全对才给分,其分数不计入总评,仅用于评判 $A+$ )
设 $f \in C[0,1] , g$ 为非负的周期函数,周期为 1 ,且 $g \in R[0,1]$ ,求证:
$$
\lim _{n \rightarrow+\infty} \int_0^1 f(x) g(n x) \mathrm{d} x=\left(\int_0^1 f(x) \mathrm{d} x\right)\left(\int_0^1 g(x) \mathrm{d} x\right) 。
$$



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷