单选题 (共 3 题 ),每题只有一个选项正确
甲袋中有 4 只红球, 有 6 只白球, 乙袋中有 6 只红球, 10 只白球, 现从两袋中各任取 1 球, 则 2 个球颜色相同的概率是
$\text{A.}$ $\frac{6}{40}$
$\text{B.}$ $\frac{15}{40}$
$\text{C.}$ $\frac{21}{40}$
$\text{D.}$ $\frac{19}{40}$
设随机变量 $X$ 服从 $N\left(27,0.2^2\right)$ 分布, 则其浙近线在 ________ 处
$\text{A.}$ $x=27$
$\text{B.}$ $y=27$
$\text{C.}$ $y=0$
$\text{D.}$ $x=0$
设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 $[-1,3]$ 上的均匀分布的概率密度, 若 $f(x)=\left\{\begin{array}{l}a f_1(x), x \leq 0 \\ b f_2(x), x>0\end{array}(a>0, b>0)\right.$ 为随机变量的概率密度, 则 $a, b$ 应满足
$\text{A.}$ $2 a+3 b=4$
$\text{B.}$ $3 a+2 b=4$
$\text{C.}$ $a+b=1$
$\text{D.}$ $a+b=2$