一、单选题
在单位圆周上随机取一点, 该点坐标记为 $(X, Y)$, 则 $D(X)=$
$\text{A.}$ $\frac{1}{2}$.
$\text{B.}$ $\frac{1}{3}$.
$\text{C.}$ $\frac{1}{4}$.
$\text{D.}$ $\frac{1}{5}$.
已知离散型随机变量 $X$ 与连续型随机变量 $Y$ 相互独立,则
$\text{A.}$ $X+Y$ 为离散型随机变量.
$\text{B.}$ $X Y$ 为离散型随机变量.
$\text{C.}$ $X+Y$ 为连续型随机变量.
$\text{D.}$ $X Y$ 为连续型随机变量.
下列数项级数哪个发散?
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
$\text{B.}$ $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$
$\text{C.}$ $\sum_{n=1}^{\infty} \ln \frac{n^2+1}{n^2}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{3^n n !}{n^n}$
椭圆抛物面 $z=x^2+\frac{1}{4} y^2+3$ 到平面 $2 x-y+z=0$ 最近的点是?
$\text{A.}$ $(-1,2,5)$
$\text{B.}$ $(1,2,5)$
$\text{C.}$ $(1,-2,5)$
$\text{D.}$ $(-1,2,-5)$
设平面区域 $D$ 是由 $y=x, x=1$ 及 $x$ 轴所围成,二重积分 $\iint_D \frac{1}{\sqrt{x^2+y^2}} d \sigma$ 转换成平面极坐标系下的二次积分,可表示为?
$\text{A.}$ $\int_0^{\frac{\pi}{2}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$
$\text{B.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$
$\text{C.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$
$\text{D.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$
函数 $f(x, y)$ 连续,交换二重积分 $\int_0^1 d y \int_y^{\sqrt{y}} f(x, y) d x$ 次序,该二重积分可表示为?
$\text{A.}$ $\int_0^1 d x \int_{x^3}^x f(x, y) d y$
$\text{B.}$ $\int_0^1 d x \int_{x^4}^x f(x, y) d y$
$\text{C.}$ $\int_0^1 d x \int_{x^2}^x f(x, y) d y$
$\text{D.}$ $\int_0^1 d x \int_{x^5}^x f(x, y) d y$
函数 $z=x e^{2 y}$ 在点 $P(1,0)$ 处沿从 $P(1,0)$ 到 $Q(2,-1)$ 的方向导数是?
$\text{A.}$ $\frac{\sqrt{2}}{5}$
$\text{B.}$ $\frac{\sqrt{2}}{3}$
$\text{C.}$ $\frac{\sqrt{2}}{2}$
$\text{D.}$ $-\frac{\sqrt{2}}{2}$
甲袋中有 4 只红球, 有 6 只白球, 乙袋中有 6 只红球, 10 只白球, 现从两袋中各任取 1 球, 则 2 个球颜色相同的概率是
$\text{A.}$ $\frac{6}{40}$
$\text{B.}$ $\frac{15}{40}$
$\text{C.}$ $\frac{21}{40}$
$\text{D.}$ $\frac{19}{40}$
设随机变量 $X$ 服从 $N\left(27,0.2^2\right)$ 分布, 则其浙近线在 ________ 处
$\text{A.}$ $x=27$
$\text{B.}$ $y=27$
$\text{C.}$ $y=0$
$\text{D.}$ $x=0$
设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 $[-1,3]$ 上的均匀分布的概率密度, 若 $f(x)=\left\{\begin{array}{l}a f_1(x), x \leq 0 \\ b f_2(x), x>0\end{array}(a>0, b>0)\right.$ 为随机变量的概率密度, 则 $a, b$ 应满足
$\text{A.}$ $2 a+3 b=4$
$\text{B.}$ $3 a+2 b=4$
$\text{C.}$ $a+b=1$
$\text{D.}$ $a+b=2$
二、填空题
已知函数 $z=\ln \left(1+x^2+y^2\right)$ ,则 $\left.d z\right|_{(1,2)}=$ ?
函数 $z=x y+\ln y$ 在点 $(2,1)$ 处的梯度方向为?
已知平面曲线 $z=4-y^2$ ,其绕 $z$ 轴旋转一周形成旋转曲面,则该旋转曲面与平面 $z=0$ 所围成的空间几何形体的体积为?
曲线积分 $\oint_L\left(x-y^2\right) d s=$ ? 其中 $L$ 是圆周 $x^2+y^2=1$
幂级数 $\sum_{n=1}^{\infty} \frac{2 n-1}{2^n} x^{2 n-2}$ 的收敛域为?
设事件 $A 、 B$ 互不相容, 已知 $P(A)=0.4, P(B)=0.5$, 则 $P(\bar{A} \cdot \bar{B})=$ , 若 $A 、 B$ 独立, 则 $P(A \cup B)=$
设 $X \sim N(1,1)$, 且 $\Phi(1)=0.8413$, 则 $P\{0 < X < 2\}=$ 。
已知二维随机变量 $(X, Y)$ 的联合分布律: 要使 $X 、 Y$ 相互独立, 则 $\alpha, \beta$ 的值为
加油站有两套用来加油的设备, 设备 $A$ 是工作人员操作的, 设备 $B$ 是顾客自己操作的, $A 、 B$ 均装有两根加油软管, 任取一时间, $A 、 B$ 正在使用的软管数分别为 $X 、 Y, X 、 Y$ 的联合分布律为下表,求:
(1) $P(X \leq 1, Y \leq 1)$
(2) 至少有一根软管在使用的概率
(3) $P(X=Y)$
(4) $P\{X+Y=2\}$
设 $A 、 B$ 为两个随机事件, $P\{A\}=0.25, P\{B \mid A\}=0.5, P\{A \mid B\}=0.25$, 令随机变量
$$
X=\left\{\begin{array}{rrr}
1 & A \text { 发生 } \\
0 & A \text { 不发生 }
\end{array} \quad Y=\left\{\begin{array}{rr}
1 & B \text { 发生 } \\
0 & B \text { 不发生 }
\end{array}\right.\right.
$$
(1) 求 $(X, Y)$ 的联合分布律
(2) 求 $P\left\{X^2+Y^2=1\right\}$
三、
请将函数 $y=x \ln (1+x)$ 展开成 $x$ 的幂级数
甲、乙两门高射炮彼此独立地向一架飞机各发一炮, 甲、乙击中飞机的概率分别为 0.3 和 0.4 , 则飞机至少被击中一炮的概率为?
设随机变量 $A$ 为 $x \in(-5,7)$ 上的均匀分布, 则关于 $x$ 的方程 $9 x^2+6 A x+A+6=0$ 有实根的概率为?
仓库中有 10 箱同种规格的产品, 其中 2 箱、 3 箱、 5 箱分别由甲、乙、丙三个厂生产, 三个厂的正品率分别为 $0.7,0.8,0.9$, 现在从这 10 箱产品中任取一箱, 再从中任取一件
(1) 求取出的产品为正品的概率
(2) 如果取出的是正品, 求此件产品由乙厂生产的概率
某保险公司把被保险人分为 3 类: “谨傎的”、“一般的”、“冒失的”, 统计资料表明, 这 3种人在一年内发生事故的概率依次为 $0.05,0.15,0.30$; 如果 “谨慎的” 被保险人占 $20 \%$, “一般的占 $50 \%$, “冒失的” 占 $30 \%$, 问:
(1) 一个被保险人在一年内出事故的概率是多大?
(2) 若已知某被保险人出了事故, 求他是 “谨慎的” 类型的概率。
设随机变量 $X$ 的分布律如下: 求: (1) $X$ 的分布函数; (2) $ P\{1 \leq X < 3\} $
设随机变量 $X$ 的概率密度为 $f(x)= \begin{cases}x & 0 \leq x < 1 \\ 2-x & 1 \leq x < 2 \\ 0 & \text { 其他 }\end{cases}$
求: (1) $X$ 的分布函数 $F(x)$
(2) 求 $P\left\{1 < X < \frac{3}{2}\right\}$
设随机变量 $X$ 的概率密度为 $f(x)=\left\{\begin{array}{ll}\frac{x}{2} & 0 < x < A \\ 0 & \text { 其他 }\end{array}\right.$, 求:
(1) 常数 $A$
(2) 分布函数 $F(x)$
(3) $P\left\{-1 < X < \frac{1}{2}\right\}$
设随机变量 $X$ 的概率密度为 $f_x(x)=\left\{\begin{array}{ll}2 e^{-2 x} & x>0 \\ 0 & \text { 其他 }\end{array}\right.$, 若 $Y=1-e^{-2 X}$, 求 $Y$ 的概率密度 $f_Y(y)$ 。