单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)$ 连续,则 $\frac{\mathrm{d}}{\mathrm{d} x} \int_0^x t f\left(x^2-t^2\right) \mathrm{d} t=$
$\text{A.}$ $x f\left(x^2\right)$
$\text{B.}$ $-x f\left(x^2\right)$
$\text{C.}$ $2 x f\left(x^2\right)$
$\text{D.}$ $-x f\left(x^2\right)$
设 $f(x)=|x(1-x)|$ ,则
$\text{A.}$ $x=0$ 是 $f(x)$ 的极值点,但 $(0,0)$ 不是曲线 $y=f(x)$ 的拐点
$\text{B.}$ $x=0$ 不是 $f(x)$ 的极值点,但 $(0,0)$ 是曲线 $y=f(x)$ 的拐点
$\text{C.}$ $x=0$ 是 $f(x)$ 的极值点,且 $(0,0)$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $x=0$ 不是 $f(x)$ 的极值点, $(0,0)$ 也不是曲线 $y=f(x)$的拐点
设函数 $f$ 连续,若 $F(u, v)=\iint_{D_{u v}} \frac{f\left(x^2+y^2\right)}{\sqrt{x^2+y^2}} \mathrm{~d} x \mathrm{~d} y$ ,其中
$$
\begin{aligned}
& D_{u v}: x^2+y^2=1, x^2+y^2=u^2, y=0, y=x \arctan v \\
& (u>1, v>0) \text { ,则 } \frac{\partial F}{\partial u}=
\end{aligned}
$$
$\text{A.}$ $v f\left(u^2\right)$
$\text{B.}$ $\frac{v}{u} f\left(u^2\right)$
$\text{C.}$ $v f(u)$
$\text{D.}$ $\frac{v}{u} f(u)$
" 对任意给定的 $\varepsilon \in(0,1)$ ,总存在正整数 $N$ ,当 $n \geq N$时,恒有 $\left|x_n-a\right| \leq 2 \varepsilon$ “是数列 $\left\{x_n\right\}$ 收敛于 $a$ 的
$\text{A.}$ 充分条件但非必要条件
$\text{B.}$ 必要但非充分条件
$\text{C.}$ 充分必要条件
$\text{D.}$ 既非充分条件又非必要条件
设 $\alpha_1=\left(\begin{array}{l}a_1 \\ a_2 \\ a_3\end{array}\right), \alpha_2=\left(\begin{array}{l}b_1 \\ b_2 \\ b_3\end{array}\right), \alpha_3=\left(\begin{array}{l}c_1 \\ c_2 \\ c_3\end{array}\right)$ ,则三条直线 $a_1 x+b_1 y+c_1=0, a_2 x+b_2 y+c_2=0, a_3 x+b_3 y+c_3=0$ (其中 $a_i^2+b_i^2 \neq 0, i=1,2,3$ ) 交于一点的充要条件是
$\text{A.}$ $\alpha_1, \alpha_2, \alpha_3$ 线性相关
$\text{B.}$ $\alpha_1, \alpha_2, \alpha_3$ 线性无关
$\text{C.}$ $r\left(\alpha_1, \alpha_2, \alpha_3\right)=r\left(\alpha_1, \alpha_2\right)$
$\text{D.}$ $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_1, \alpha_2$ 线性无关
16. 设
$$
A =\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right), B =\left(\begin{array}{llll}
a_{14} & a_{13} & a_{12} & a_{11} \\
a_{24} & a_{23} & a_{22} & a_{21} \\
a_{34} & a_{33} & a_{32} & a_{31} \\
a_{44} & a_{43} & a_{42} & a_{41}
\end{array}\right), P _1=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),
$$
$P _2=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, 其中 $A$ 可逆, 则 $B ^{-1}$ 等于
$\text{A.}$ $A ^{-1} P _1 P _2$.
$\text{B.}$ $P _1 A ^{-1} P _2$.
$\text{C.}$ $P _1 P _2 A ^{-1}$.
$\text{D.}$ $P _2 A ^{-1} P _1$.