单选题 (共 6 题 ),每题只有一个选项正确
下列结论正确的是
$\text{A.}$ $\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^x=1$
$\text{B.}$ $\lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)^x= e$
$\text{C.}$ $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{-x}=- e$
$\text{D.}$ $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x= e ^{-1}$
若 $y=\sin f\left(x^2\right), f(u)$ 一阶可导,则 $d y=()$
$\text{A.}$ $\cos f\left(x^2\right) d x$
$\text{B.}$ $f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$
$\text{C.}$ $2 x f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$
$\text{D.}$ $2 x^2 f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$
设 $f(x)$ 为微分方程 $y^{\prime \prime}-y^{\prime}- e ^{\sin x}=0$ 的解, 且 $f^{\prime}\left(x_0\right)=0$, 则 $f(x)$ 在 $(\quad)$.
$\text{A.}$ $x_0$ 的某邻域内单调递减
$\text{B.}$ $x_0$ 处取极小值
$\text{C.}$ $x_0$ 处取极大值
$\text{D.}$ $x_0$ 的某邻域内单调递增
设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则 ()
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-4}{x^2+y^2}=-1$, 则 $\lim _{h \rightarrow 0} \frac{f(2 h, 0)-f(0,-h)}{h}=($ )
$\text{A.}$ -1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设 $f(x)=\int_0^x\left( e ^{\cos t} \cos t-k\right) d t$, 若积分 $\int_a^{a+2 \pi} f(x) d x$ 的值与 $a$ 无关, 则 $k=(\quad)$.
$\text{A.}$ $\int_0^{2 \pi} e ^{\cos x} \cos x d x$
$\text{B.}$ $\frac{1}{2 \pi} \int_0^{2 \pi} e ^{\cos x} \cos x d x$
$\text{C.}$ $\int_0^\pi e^{\cos x} \cos x d x$
$\text{D.}$ 0