单选题 (共 1 题 ),每题只有一个选项正确
求 $\lim _{n \rightarrow \infty} \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}$.
$\text{A.}$ 1;
$\text{B.}$ $\frac{2}{\pi}$
$\text{C.}$ $\frac{\pi}{2}$
$\text{D.}$ 0
填空题 (共 2 题 ),请把答案直接填写在答题纸上
已知 $x=0$ 是 $f(x)=\frac{x+b \ln (1+x)}{a x-\sin x}$ 的可去间断点,求 $a, b$ 的取值范围
$\lim _{n \rightarrow+\infty} \sum_{k=1}^n \frac{\sqrt{k}}{n \sqrt{n+\frac{1}{k}}}=$
解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限: $\lim _{x \rightarrow 0} \frac{\sin \left(x^2 \sin \frac{1}{x}\right)}{x}$
已知数列 $a_n=\sqrt{1+2+\cdots+n}-\sqrt{1+2+\cdots+(n-1)}$, 求 $\lim _{n \rightarrow \infty} a_n$.
求数列极限 $\lim _{n \rightarrow \infty}\left(\frac{1}{2 n^2+1}+\frac{2}{2 n^2+2}+\cdots+\frac{n}{2 n^2+n}\right)$.