单选题 (共 5 题 ),每题只有一个选项正确
曲线 $y=\frac{1}{x}+\ln \left(1+ e ^x\right)$ 渐近线的条数为
$\text{A.}$ 0 .
$\text{B.}$ 1 .
$\text{C.}$ 2 .
$\text{D.}$ 3 .
当 $x>0$ 时, 曲线 $y=x \sin \frac{1}{x}$
$\text{A.}$ 有且仅有水平渐近线.
$\text{B.}$ 有且仅有铅直渐近线.
$\text{C.}$ 既有水平渐近线, 也有铅直渐近线.
$\text{D.}$ 既无水平渐近线, 也无铅直渐近线.
已知 $y=\ln (1-x)$, 则 $\frac{d^n y}{d x^n}=(\quad)$.
$\text{A.}$ $(-1)^{n-1} \frac{(n-1)!}{(1-x)^n}$
$\text{B.}$ $-\frac{(n-1)!}{(1-x)^n}$
$\text{C.}$ $(-1)^{n-1} \frac{1}{(1-x)^n}$
$\text{D.}$ $-\frac{1}{(1-x)^n}$
设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则下列顺序正确的是 ( ).
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$
$\text{B.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$
$\text{C.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$
函数 $f(x)=x e^x$ 的带有皮亚诺型余项的 $n$ 阶麦克劳林公式为 ( ).
$\text{A.}$ $x e^x=x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o\left(x^n\right)$
$\text{B.}$ $x e^x=x+x^2+\frac{x^3}{2!}+\cdots+\frac{x^n}{(n-1)!}+o\left(x^n\right)$
$\text{C.}$ $x e^x=x+\frac{x^2}{2}+\cdots+\frac{x^n}{n}+o\left(x^n\right)$
$\text{D.}$ $x e^x=x+x^2+\frac{x^3}{2}+\cdots+\frac{x^n}{n-1}+o\left(x^n\right)$
填空题 (共 1 题 ),请把答案直接填写在答题纸上
$y=\frac{\arcsin x+\arccos x}{e^x}(-1 \leq x \leq 1)$, 求 $y^{(n)}$