单选题 (共 6 题 ),每题只有一个选项正确
已知 $a_n=\frac{(-1)^{[\cos 2 n]}}{n}$, 其中 $n$ 为正整数, $[\cos 2 n]$ 表示不超过 $\cos 2 n$ 的最大整数, 则数列 $\left\{a_n\right\}$
$\text{A.}$ 有最大值 $\frac{1}{2}$, 有最小值 -1 .
$\text{B.}$ 有最大值 1 , 有最小值 $-\frac{1}{3}$.
$\text{C.}$ 有最大值 1 , 有最小值 $-\frac{1}{2}$.
$\text{D.}$ 有最大值 $\frac{1}{3}$, 有最小值 -1 .
$\lim _{x \rightarrow 0} \frac{(\cos x-\sqrt{\cos x}) \sin (\sin x)}{[x-\ln (1+\tan x)]\left(e^x-1\right)}=$
$\text{A.}$ $\frac{1}{2}$
$\text{B.}$ $\frac{1}{3}$
$\text{C.}$ $-\frac{1}{2}$
$\text{D.}$ $-\frac{1}{3}$
设 $[x]$ 表示不超过 $x$ 的最大整数, 则 $x=0$ 是函数 $f(x)=\mathrm{e}^{-\frac{[x]}{x}}$ 的
$\text{A.}$ 跳跃间断点
$\text{B.}$ 可去间断点
$\text{C.}$ 无穷型间断点
$\text{D.}$ 无限振荡型间断点
曲线 $y=\frac{1}{x}+\ln \left(1+e^x\right)$ 渐近线的条数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设数列 $\left\{x_n\right\}$ 收敛,则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} \sin x_n=0$ 时, $\lim _{n \rightarrow \infty} x_n=0$
$\text{B.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+\sqrt{\left|x_n\right|}\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$
$\text{C.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+x_n^2\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$
$\text{D.}$ 当 $\lim _{n \rightarrow \infty}\left(x_n+\sin x_n\right)=0$ 时,则 $\lim _{n \rightarrow \infty} x_n=0$
设 $f(1)=0, f^{\prime}(1)=a$, 则极限 $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 f\left(\mathrm{e}^{x^2}\right)}-\sqrt{1+f\left(1+\sin ^2 x\right)}}{\ln \cos x}$ 为
$\text{A.}$ $a$
$\text{B.}$ $-a$
$\text{C.}$ $3 a$
$\text{D.}$ $-3 a$