考研数学
重点科目
其它科目

科数网

极限训练

数学

单选题 (共 2 题 ),每题只有一个选项正确
设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.

设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$

填空题 (共 2 题 ),请把答案直接填写在答题纸上
$\lim _{x \rightarrow 0} \frac{e^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^2}$

设函数 $f(x)$ 在点 $x=0$ 可导, 且 $f(0)=0, f^{\prime}(0)=2$, 则 $\lim _{x \rightarrow 0} \frac{f(1-\cos x)}{(\arctan x)^2}=$

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求 $\lim _{x \rightarrow 0}\left\{\frac{a_1^x+a_2^x+\cdots+a_n^x}{n}\right\}^{\frac{1}{x}}\left(a_i>0, i=1,2, \cdots, n\right)$.

设 $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{a x}-\frac{1+b x}{1+2 x}}{1-\sqrt{1-x^2}}=-4$, 求 $a, b$.

试卷二维码

分享此二维码到群,让更多朋友参与