科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

函数极限单元检测

数学

一、单选题 (共 10 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.


设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.


设函数$f(x)$在$R$上处处有定义,且$f(0)=0$,则下列命题错误的是
$\text{A.}$ 当 $x \rightarrow 0$ 时,若 $f(x) \sim \sin ^2 x$, 则 $f^{\prime}(0)$ 存在. $\text{B.}$ 若 $0 \leqslant f(x) \leqslant \sin ^2 x$ 恒成立, 则 $f^{\prime}(0)$ 存在. $\text{C.}$ 若在 $[0,+\infty)$ 上 $g(x) \leqslant f(x) \leqslant h(x)$, 在 $(-\infty, 0)$ 上 $h(x) \leqslant f(x) \leqslant g(x)$, 且当 $x \rightarrow 0$时, 函数 $g(x)$ 和 $h(x)$ 都是 $x$ 的同阶无穷小, 则 $f(x)$ 也是 $x$ 的同阶无穷小. $\text{D.}$ 当 $x \rightarrow 0$ 时,若 $f^{\prime}(0)$ 存在且不为 0 ,则 $f(x)$ 是 $x$ 的同阶无穷小.


设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$


设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在 $\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在


当 $x \rightarrow x_0$ 时, $\alpha(x), \beta(x)$ 都是无穷小, 则当 $x \rightarrow x_0$ 时 ( ) 不一定是无穷小。
$\text{A.}$ $|\alpha(x)|+|\beta(x)|$ $\text{B.}$ $\alpha^2(x)+\beta^2(x)$ $\text{C.}$ $\ln [1+\alpha(x) \cdot \beta(x)]$ $\text{D.}$ $\frac{\alpha^2(x)}{\beta(x)}$


$f(x)=\left\{\begin{array}{ll}\frac{\sin x+e^{2 a x}-1}{x} & x \neq 0 \\ a & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则 $a=$.
$\text{A.}$ 1 $\text{B.}$ 0 $\text{C.}$ e $\text{D.}$ -1


设 $f(x)=2^x+3^x-2$, 则当 $x \rightarrow 0$ 时, 有
$\text{A.}$ $f(x)$ 与 $x$ 是等价无穷小 $\text{B.}$ $f(x)$ 与 $x$ 同阶但非等价无穷小 $\text{C.}$ $f(x)$ 是比 $x$ 高阶的无穷小 $\text{D.}$ $f(x)$ 是比 $x$ 低阶的无穷小


设$f(x)=\dfrac{e^{\frac{1}{x}}-1}{\mathrm{e}^{\frac{1}{x}}+1}$则 $x=0$ 是 $f(x)$ 的
$\text{A.}$ 可去间断点 $\text{B.}$ 跳跃间断点 $\text{C.}$ 第二类间断点 $\text{D.}$ 连续点


设 $\lim _{x \rightarrow 0}\left[a x \ln \left(1+\mathrm{e}^{\frac{1}{x}}\right)-\operatorname{arccot} \frac{1}{x}\right]$ 存在, 则 $a=(\quad)$
$\text{A.}$ $\pi$. $\text{B.}$ $-\pi$. $\text{C.}$ $\frac{1}{\pi}$. $\text{D.}$ $-\frac{1}{\pi}$.


二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0} \frac{e^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^2}$



已知函数 $f(x)$ 连续,且 $\lim _{x \rightarrow 0} \frac{1-\cos [x f(x)]}{\left(e^{x^2}-1\right) f(x)}=1$ ,则 $f(0)=$



设函数 $f(x)=\left\{\begin{array}{ll}x^2+1, & |x| \leq c \\ \frac{2}{|x|}, & |x|>c\end{array}\right.$ 在 $(-\infty,+\infty)$ 内连续,则 $c=$



极限 $\lim _{x \rightarrow 0}\left(\frac{1+e^x}{2}\right)^{\cot x}=$



当 $x \rightarrow 0$ 时,函数 $f(x)=a x+b x^2+\ln (1+x)$ 与 $g(x)=\mathrm{e}^{x^2}-\cos x$ 是等价无穷小, 则 $a b=$



已知 $\lim _{x \rightarrow 0} \frac{\left(1+a x^2\right)^{\sin x}-1}{x^3}=6$, 则 $a=$



三、解答题 ( 共 6 题,满分 70 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $a_1=a>0, a_2=b>0$, 且满足 $a_{n+2}=2+\frac{1}{a_{n+1}^2}+\frac{1}{a_n^2}, \quad n=1,2,3$ 证明: 数列 $\left\{a_n\right\}$ 收敛.



 

若 $\lim _{x \rightarrow 1} \frac{\sqrt{x^4+3}-\left[A+B(x-1)+C(x-1)^2\right]}{(x-1) \sin (x-1)}=0$, 求常数 $A, B, C$ 。



 


$$
f(x)=\left\{\begin{array}{cl}
1, & |x| < 1 \\
0, & |x|=1, g(x)=\mathrm{e}^x \\
-1, & |x|>1
\end{array}\right.
$$

求 $f[g(x)]$ 和 $g[f(x)]$, 并作出这两个函数的图形.



 

设 $f(x)$ 对任意实数 $x, y$, 有 $f(x+y)=f(x)+f(y)$, 且 $f(x)$ 在 $x=0$ 处连续, 证明: $f(x)$在 $\mathbf{R}$ 上连续。



 

求极限 $\lim _{x \rightarrow+\infty}\left[\sqrt{4 x^2+x} \ln \left(2+\frac{1}{x}\right)-2 x \ln 2\right]$



 

求极限 $\lim _{n \rightarrow \infty} 2^n \sqrt{2-\sqrt{2+\sqrt{2+\cdots \sqrt{2}}}}$



 

试卷二维码

分享此二维码到群,让更多朋友参与