单选题 (共 6 题 ),每题只有一个选项正确
设随机变量 $X_i \sim\left(\begin{array}{ccc}-1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right)(i=1,2)$, 且满足 $P\left\{X_1 X_2=0\right\}=1$ ,则 $P\left\{X_1=X_2\right\}$ 等于
$\text{A.}$ 0
$\text{B.}$ $\frac{1}{4}$
$\text{C.}$ $\frac{1}{2}$
$\text{D.}$ 1
设随机变量 $\boldsymbol{X}$ 和 $Y$ 都服从正态分布,且它们不相关,则
$\text{A.}$ $\boldsymbol{X}$ 与 $\boldsymbol{Y}$ 一定独立
$\text{B.}$ $(\boldsymbol{X}, \boldsymbol{Y})$ 服从二维正态分布
$\text{C.}$ $\boldsymbol{X}$ 与 $Y$ 未必独立
$\text{D.}$ $\boldsymbol{X}+\boldsymbol{Y}$ 服从一维正态分布
设二维随机变量的概率分布为
已知随机事件 $\{X=0\}$ 与 $\{X+Y=1\}$ 相互独立,则
$\text{A.}$ $a=0.2, b=0.3$
$\text{B.}$ $a=0.4, b=0.1$
$\text{C.}$ $a=0.3, b=0.2$
$\text{D.}$ $a=0.1, b=0.4$
设随机变量 $(X, Y)$ 服从二维正态分布,且 $X$ 与 $Y$ 不相关, $f_X(x), f_Y(y)$ 分别表示 $X , Y$ 的概率密度,则在 $Y=y$ 的条件下, $X$ 的条件概率密度 $f_{X \mid Y}(x \mid y)$ 为
$\text{A.}$ $f_X(x)$
$\text{B.}$ $f_Y(y)$
$\text{C.}$ $f_X(x) f_Y(y)$
$\text{D.}$ $\frac{f_X(x)}{f_Y(y)}$
设随机变量 $(X, Y)$ 服从二维正态分布,且 $X$ 与 $Y$ 不相关, $f_X(x), f_Y(y)$ 分别表示 $X , Y$ 的概率密度,则在 $Y=y$ 的条件下, $X$ 的条件概率密度 $f_{X \mid Y}(x \mid y)$ 为
$\text{A.}$ $f_X(x)$
$\text{B.}$ $f_Y(y)$
$\text{C.}$ $f_X(x) f_Y(y)$
$\text{D.}$ $\frac{f_X(x)}{f_Y(y)}$
设随机变量 $\boldsymbol{X}$ 与 $\boldsymbol{Y}$ 相互独立,且 $\boldsymbol{X}$ 服从标准正态分布 $N(0,1) , Y$ 的概率分布为
$$
P\{Y=0\}=P\{Y=1\}=\frac{1}{2} .
$$
记 $F_z(z)$ 为随机变量 $Z=X Y$ 的分布函数,则函数 $F_z(z)$ 的间断点个数为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3