考研数学
重点科目
其它科目

科数网

考研数学-0725-10

数学

单选题 (共 6 题 ),每题只有一个选项正确
设$f(x)$在$[0, \infty)$上连续,在$(0, \infty)$内可导,则$\left(\quad\right)$.
$\text{A.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$ $\text{B.}$ 若 $\lim \limits _{x \rightarrow 0^{ }}f'(x)=0$, 则 $\lim \limits _{x \rightarrow 0^{ }}f(x)=0$ $\text{C.}$ 若 $\lim \limits _{x \rightarrow \infty }f(x)= \infty $, 则 $\lim \limits _{x \rightarrow \infty }f'(x)= \infty$ $\text{D.}$ 若 $\lim \limits {x \rightarrow \infty }f'(x)=A>0$, 则 $\lim \limits {x \rightarrow \infty }f(x)= \infty$

若$f(-x)=-f(x)$,且在$(0, \infty)$内. $f'(x)>0$,$f'(x)>0$, 则在$(-\infty,0)$内$\left(\quad\right)$.
$\text{A.}$ $f'(x) < 0$,$f''(x) < 0$ $\text{B.}$ $f'(x) < 0$,$f''(x)>0$ $\text{C.}$ $f'(x)>0$,$f''(x) < 0$ $\text{D.}$ $f'(x)>0$,$f''(x)>0$

若$f(-x)=-f(x)$,且在$(0, \infty)$内. $f'(x)>0$,$f'(x)>0$, 则在$(-\infty,0)$内$\left(\quad\right)$.
$\text{A.}$ $2e^2$ $\text{B.}$ $2e^{-2}$ $\text{C.}$ $e^2-1$ $\text{D.}$ $e^{-2}-1$

设$y=y(x)$由 $x- \int _{1}^{x y}e^{-t^{2}}dt=0$ 确定,则 $y''(0)=\left(\quad\right)$.
$\text{A.}$ $2e^2$ $\text{B.}$ $2e^{-2}$ $\text{C.}$ $e^2-1$ $\text{D.}$ $e^{-2}-1$

设 $f(x)=|x^3-x|(e^x-1)$, 其不可导的点为$\left(\quad\right)$.
$\text{A.}$ $x = 0$ $\text{B.}$ $x = 1$ $\text{C.}$ $x =2$ $\text{D.}$ $x = 3$

设函数 $f(x)= \begin{cases} x^{3} \sin \dfrac {1}{x},&x>0, \\ x^{2},&x \le 0, \end{cases}$ 则在点$x=0$处$f(x)\left(\quad\right)$.
$\text{A.}$ 不连续 $\text{B.}$ 连续但不可导 $\text{C.}$ 可导但导数不连续 $\text{D.}$ 导数连续

试卷二维码

分享此二维码到群,让更多朋友参与