考研数学
重点科目
其它科目

科数网

考研数学-0725-07

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $I_1=\int_0^{\frac{\pi}{4}} \frac{\tan x}{x} \mathrm{~d} x, I_2=\int_0^{\frac{\pi}{4}} \frac{x}{\tan x} \mathrm{~d} x$ ,则
$\text{A.}$ $I_1>I_2>1$ $\text{B.}$ $1>I_1>I_2$ $\text{C.}$ $I_2>I_1>1$ $\text{D.}$ $1>I_2>I_1$

把 $x \rightarrow 0^{+}$时的无穷小量
$$
\alpha=\int_0^x \cos t^2 \mathrm{~d} t, \beta=\int_0^{x^2} \tan \sqrt{t} \mathrm{~d} t, \gamma=\int_0^{\sqrt{x}} \sin t^3 \mathrm{~d} t ,
$$

排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
$\text{A.}$ $\alpha, \beta, \gamma$ $\text{B.}$ $\alpha, \gamma, \beta$ $\text{C.}$ $\beta, \alpha, \gamma$ $\text{D.}$ $\beta, \gamma, \alpha$

设 $F(x)$ 是连续函数 $f(x)$ 的一个原函数," $M \Leftrightarrow N$ "表示" $M$ 的充分必要条件是 $N$ ",则必有
$\text{A.}$ $F(x)$ 是偶函数 $\Leftrightarrow f(x)$ 是奇函数 $\text{B.}$ $F(x)$ 是奇函数 $\Leftrightarrow f(x)$ 是偶函数 $\text{C.}$ $F(x)$ 是周期函数 $\Leftrightarrow f(x)$ 是周期函数 $\text{D.}$ $F(x)$ 是单调函数 $\Leftrightarrow f(x)$ 是单调函数

设 $I_1=\iint_D \cos \sqrt{x^2+y^2} \mathrm{~d} \sigma , I_2=\iint_D \cos \left(x^2+y^2\right) \mathrm{d} \sigma$ , $I_3=\iint_D \cos \left(x^2+y^2\right)^2 \mathrm{~d} \sigma$ ,其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 1\right\}$ ,则
$\text{A.}$ $I_3>I_2>I_1$. $\text{B.}$ $I_1>I_2>I_3$. $\text{C.}$ $I_2>I_1>I_3$ $\text{D.}$ $I_3>I_1>I_2$.

连续函数 $y=f(x)$ 在区间 $[-3,-2] ,[2,3]$ 上的图形分别是直径为 1 的上、下半圆周,在区间 $[-2,0] ,[0,2]$ 的图形分别是直径为 2 的下、上半圆周,设 $F(x)=\int_0^x f(t) \mathrm{d} t$ ,则下列结论正确的是
$\text{A.}$ $F(3)=-\frac{3}{4} F(-2)$ $\text{B.}$ $F(3)=\frac{5}{4} F(2)$ $\text{C.}$ $F(-3)=\frac{3}{4} F(2)$ $\text{D.}$ $F(-3)=-\frac{5}{4} F(-2)$

设曲线 $L: f(x, y)=1(f(x, y)$ 具有一阶连续偏导数),过第 2 象限内的点 $M$ 和第 4 象限内的点 $N, \Gamma$ 为 $L$ 上从点 $M$到点 $N$ 的一段弧,则下列积分小于零的是
$\text{A.}$ $\int_{\Gamma} f(x, y) \mathrm{d} x$ $\text{B.}$ $\int_{\Gamma} f(x, y) \mathrm{d} y$ $\text{C.}$ $\int_{\Gamma} f(x, y) \mathrm{d} s$ $\text{D.}$ $\int_{\Gamma} f_x^{\prime}(x, y) \mathrm{d} x+f_y^{\prime}(x, y) \mathrm{d} y$

试卷二维码

分享此二维码到群,让更多朋友参与