单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 的导数在 $x=a$ 处连续,又 $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{x-a}=-1$ ,则
$\text{A.}$ $x=a$ 是 $f(x)$ 的极小值点.
$\text{B.}$ $x=a$ 是 $f(x)$ 的极大值点.
$\text{C.}$ (a, f(a))$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $x=a$ 不是 $f(x)$ 的极值点, $(a, f(a))$ 也不是曲线 $y=f(x)$ 的拐点
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,其导函数的图形如下图所示,则 $f(x)$ 有
$\text{A.}$ 一个极小值点和两个极大值点
$\text{B.}$ 两个极小值点和一个极大值点
$\text{C.}$ 两个极小值点和两个极大值点
$\text{D.}$ 三个极小值点和一个极大值点
设函数 $f(x)$ 连续,且 $f^{\prime}(0)>0$, 则存在 $\delta>0$ ,使得
$\text{A.}$ $f(x)$ 在 $(0, \delta)$ 内单调增加
$\text{B.}$ $f(x)$ 在 $(-\delta, 0)$ 内单调减少
$\text{C.}$ 对任意的 $x \in(0, \delta)$ 有 $f(x)>f(0)$
$\text{D.}$ 对任意的 $x \in(-\delta, 0)$ 有 $f(x)>f(0)$
设 $f(x)=|x(1-x)|$ ,则
$\text{A.}$ $x=0$ 是 $f(x)$ 的极值点,但 $(0,0)$ 不是曲线 $y=f(x)$ 的拐点
$\text{B.}$ $x=0$ 不是 $f(x)$ 的极值点,但 $(0,0)$ 是曲线 $y=f(x)$ 的拐点
$\text{C.}$ $x=0$ 是 $f(x)$ 的极值点,且 $(0,0)$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $x=0$ 不是 $f(x)$ 的极值点, $(0,0)$ 也不是曲线 $y=f(x)$的拐点
当 $a$ 取下列哪个值时,函数 $f(x)=2 x^3-9 x^2+12 x-a$恰好有两个不同的零点
$\text{A.}$ 2
$\text{B.}$ 4
$\text{C.}$ 6
$\text{D.}$ 8