单选题 (共 6 题 ),每题只有一个选项正确
把 $x \rightarrow 0^{+}$时的无穷小量
$$
\alpha=\int_0^x \cos t^2 \mathrm{~d} t, \beta=\int_0^{x^2} \tan \sqrt{t} \mathrm{~d} t, \gamma=\int_0^{\sqrt{x}} \sin t^3 \mathrm{~d} t ,
$$
排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
$\text{A.}$ $\alpha, \beta, \gamma$
$\text{B.}$ $\alpha, \gamma, \beta$
$\text{C.}$ $\beta, \alpha, \gamma$
$\text{D.}$ $\beta, \gamma, \alpha$
设 $F(x)$ 是连续函数 $f(x)$ 的一个原函数," $M \Leftrightarrow N$ "表示" $M$ 的充分必要条件是 $N$ ",则必有
$\text{A.}$ $F(x)$ 是偶函数 $\Leftrightarrow f(x)$ 是奇函数
$\text{B.}$ $F(x)$ 是奇函数 $\Leftrightarrow f(x)$ 是偶函数
$\text{C.}$ $F(x)$ 是周期函数 $\Leftrightarrow f(x)$ 是周期函数
$\text{D.}$ $F(x)$ 是单调函数 $\Leftrightarrow f(x)$ 是单调函数
设 $I_1=\iint_D \cos \sqrt{x^2+y^2} \mathrm{~d} \sigma , I_2=\iint_D \cos \left(x^2+y^2\right) \mathrm{d} \sigma$ , $I_3=\iint_D \cos \left(x^2+y^2\right)^2 \mathrm{~d} \sigma$ ,其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 1\right\}$ ,则
$\text{A.}$ $I_3>I_2>I_1$.
$\text{B.}$ $I_1>I_2>I_3$.
$\text{C.}$ $I_2>I_1>I_3$
$\text{D.}$ $I_3>I_1>I_2$.
连续函数 $y=f(x)$ 在区间 $[-3,-2] ,[2,3]$ 上的图形分别是直径为 1 的上、下半圆周,在区间 $[-2,0] ,[0,2]$ 的图形分别是直径为 2 的下、上半圆周,设 $F(x)=\int_0^x f(t) \mathrm{d} t$ ,则下列结论正确的是
$\text{A.}$ $F(3)=-\frac{3}{4} F(-2)$
$\text{B.}$ $F(3)=\frac{5}{4} F(2)$
$\text{C.}$ $F(-3)=\frac{3}{4} F(2)$
$\text{D.}$ $F(-3)=-\frac{5}{4} F(-2)$
设曲线 $L: f(x, y)=1(f(x, y)$ 具有一阶连续偏导数),过第 2 象限内的点 $M$ 和第 4 象限内的点 $N, \Gamma$ 为 $L$ 上从点 $M$到点 $N$ 的一段弧,则下列积分小于零的是
$\text{A.}$ $\int_{\Gamma} f(x, y) \mathrm{d} x$
$\text{B.}$ $\int_{\Gamma} f(x, y) \mathrm{d} y$
$\text{C.}$ $\int_{\Gamma} f(x, y) \mathrm{d} s$
$\text{D.}$ $\int_{\Gamma} f_x^{\prime}(x, y) \mathrm{d} x+f_y^{\prime}(x, y) \mathrm{d} y$
设某商品的需求函数为 $Q=160-2 P$ ,其中 $Q, P$ 分别表示需要量和价格,如果该商品需求弹性的绝对值等于 1 ,则商品的价格是
$\text{A.}$ 10
$\text{B.}$ 20
$\text{C.}$ 30
$\text{D.}$ 40