科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学33

数学

一、解答题 ( 共 29 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算极限: $\lim _{n \rightarrow+\infty}\left(\frac{1}{n+\sqrt{1}}+\frac{1}{n+\sqrt{2}}+\cdots+\frac{1}{n+\sqrt{n}}\right)$.



 

计算:$\lim _{x \rightarrow 0} \dfrac{x-\int_0^x\left(1+\sin ^2 t\right)^2 \mathrm{~d} t}{x^2 \sin x}$.



 

解答如下问题:
(1)叙述闭区间套定理.
(2) 用闭区间套定理证明聚点定理.



 

证明: 若闭区间 $[a, b]$ 上的单调有界函数 $f(x)$ 能取到 $f(a)$ 与 $f(b)$ 之间的一切值,则 $f(x)$ 是闭区间 $[a, b]$ 上的连续函数.



 

设 $f(x)$ 在 $(a, b)$ 上可导,且已知
$$
x_1, x_2 \in(a, b), x_1 < x_2 \text { 且 } f^{\prime}\left(x_1\right) f^{\prime}\left(x_2\right) < 0 .
$$
证明: 存在 $\xi \in\left(x_1, x_2\right)$ ,使得 $f^{\prime}(\xi)=0$.



 

设无穷积分 $\int_a^{+\infty} f(x) \mathrm{d} x$ 收敛.
(1) 证明: 若 $f(x)$ 在 $[a,+\infty)$ 上一致连续,则
$$
\lim _{x \rightarrow+\infty} f(x)=0 .
$$
(2) 若去掉 “一致连续” 能否推出 " $\lim _{x \rightarrow+\infty} f(x)=0$ " ? 若可 以,请证明,否则举出反例.



 

若 $a_{2 n-1}=\frac{1}{n}, a_{2 n}=\int_n^{n+1} \frac{\mathrm{d} x}{x}$ ,证明: 级数 $\sum_{n=1}^{\infty}(-1)^n a_n$ 条件收敛.



 

设二元函数 $f(x, y)=\left\{\begin{array}{l}\frac{2 x y^3}{x^2+y^4}, x^2+y^2 \neq 0 \\ 0, x^2+y^2=0\end{array}\right.$. 讨 论 $f$ 在原点的连续性,偏导数的存在性以及 $f$ 在原点的可微性.



 

求积分
$$
I=\int_L e^x(1-\cos y) \mathrm{d} x-e^x(y-\sin y) \mathrm{d} y ,
$$
其中 $L$ 为曲线 $y=\sin x$ 从 $O=(0,0)$ 到 $A=(\pi,0) $ 段。



 

求积分 $\int_0^{\mathrm{e}} \cos (\ln x) \mathrm{d} x$ 的值。



 

求常微分方程 $y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^x$ 的通解



 

求函数 $y=4 \mathrm{e}^{-x}\left(2 x^2+x+1\right)-5$ 的单调区间,极值,上凸区间Q与下凸区间, 以及拐点的横坐标。



 

设 $D$ 为 $y=\sqrt{x(1-x)}$ 与 $x$ 轴围成的有界区域。
( I ) 求 $D$ 的面积;
(II) 求 $D$ 绕 $x$ 轴旋转一周所成旋转体体积。



 

设平面曲线 $y=y(x)$ 满足 $y(0)=1 , y^{\prime}(0)=0$ ,且对曲线上任意点 $P(x, y)$ $(x>0)$ ,沿曲线从点 $(0,1)$ 到点 $P(x, y)$ 的弧长等于该曲线在点 $P(x, y)$ 的切线斜率,求 $y(x)(x>0)$ 。



 

设 $f(x)$ 是 $\mathbb{R}$ 上以 $T$ 为周期的周期函数Q,且连续,证明:
( I ) 函数 $F(x)=\int_0^x f(t) \mathrm{d} t-\frac{x}{T} \int_0^T f(t) \mathrm{d} t$ 是以 $T$ 为周期的周期函数;
(II) $\lim _{x \rightarrow+\infty} \frac{1}{x} \int_0^x f(t) \mathrm{d} t=\frac{1}{T} \int_0^T f(t) \mathrm{d} t$ 。



 

设可导函数 $ f(x)$ 满足 $f(1)=1$ ,且对 $x \geq 1$ 时,有 $f^{\prime}(x)=\frac{1}{x^2+f^2(x)}$ 。
( I ) 证明: $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限;
(II) 证明: $\lim _{x \rightarrow+\infty} f(x) \leq 1+\frac{\pi}{4}$ 。
附加题 (本题为附加题,全对才给分,其分数不计入总评,仅用于评判 $A+$ )
设 $f \in C[0,1] , g$ 为非负的周期函数,周期为 1 ,且 $g \in R[0,1]$ ,求证:
$$
\lim _{n \rightarrow+\infty} \int_0^1 f(x) g(n x) \mathrm{d} x=\left(\int_0^1 f(x) \mathrm{d} x\right)\left(\int_0^1 g(x) \mathrm{d} x\right) 。
$$



 

设函数 $f(x)= \begin{cases}x^a \sin \frac{1}{x}, & x>0, \\ b, & x=0, \\ \frac{1-\cos x}{(-x)^{a-2}}, & x < 0\end{cases}$ 有连续的导函数, 求 a 的取值范围.



 

设非负函数 $y(x)$ 在 $(0,+\infty)$ 内可导且单调减少. 记曲线 $y=y(x)$ 上任意一点 $P$ 处的切 线与 $x$ 轴, $y$ 轴的交点分别为 $P_x, P_y$. 若 $\left|P P_x\right|=2\left|P P_y\right|$, 且曲线上横坐标为 1 的点处的切线斜率为 -1 , 求:
(I) 曲线 $y=y(x)$ 的方程;
(II) 曲线 $y=y(x)$ 在点 $(2, y(2))$ 处的曲率半径.



 

设 $\Sigma$ 为曲面 $4 x^2+y^2+z^2=1(z \geqslant 0)$ 的下侧, 计算曲面积分
$$
I=\iint_{\Sigma}(x+2 y) \mathrm{d} y \mathrm{~d} z+\frac{z}{\sqrt{x^2+y^2+z^2}} \mathrm{~d} z \mathrm{~d} x+\left(x^2-\frac{y}{\sqrt{x^2+y^2+z^2}}\right) \mathrm{d} x \mathrm{~d} y .
$$



 

设 $a$ 为常数, 反常积分 $\int_0^{+\infty} \frac{x^a \arctan x^b}{\sqrt{1+x^c}} \mathrm{~d} x$ 对任意正实数 $b, c$ 均收玫.
(I) 求 $a$ 的值.
(II) 证明: $\frac{\sqrt{2} \pi^2}{8} \leqslant \int_0^{+\infty} \frac{x^a \arctan x}{\sqrt{1+x^2}} \mathrm{~d} x \leqslant \frac{\pi(\pi+2)}{8}$.



 

求极限 $\lim _{x \rightarrow 0} \frac{1}{x^4}\left[\ln \left(1+\sin ^2 x\right)-6(\sqrt[3]{2-\cos x}-1)\right]$



 

求极限 $$\lim _{x \rightarrow 0} \int_0^x\left(\dfrac{\arctan t}{t}\right)^{\dfrac{1}{\int_0^t \ln (1+u) d u}} \cot x d t$$



 

求极限 $\lim _{x \rightarrow+\infty}\left[\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\ln \left(x+\sqrt{x^2-1}\right)}\right]^{x^2 \ln x}$.



 

设 $f(x)$ 连续, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$. 求极限 $\lim _{x \rightarrow 0}\left[1+\int_0^x t f\left(x^2-t^2\right) d t\right]^{({tan} x-x) \ln (1+x)}$.



 

设 $f_n(x)=x n^{-x}(n=1,2, \cdots)$. 问 $\left\{f_n(x)\right\}$ 在 $[0,+\infty)$ 是否一致收敛.



 

计算极限
$$
\lim _{x \rightarrow 1}\left(\frac{m}{1-x^m}-\frac{n}{1-x^n}\right) .
$$



 

设 $\left\{y_n\right\}$ 是趋于正无穷的严格递增数列, 求证:
$$
\varlimsup_{n \rightarrow \infty} \frac{x_n}{y_n} \leq \varlimsup_{n \rightarrow \infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}
$$



 

设 $f(x)$ 连续, $g(x)=\frac{1}{n !} \int_0^x(x-t)^n f(t) \mathrm{d} t$, 计算 $g^{(n+1)}(x)$.



 

求函数 $f(x)=(1-x) \sqrt{|x|}$ 在 $(-1,1)$ 的极值点和极值.



 

试卷二维码

分享此二维码到群,让更多朋友参与