考研数学
重点科目
其它科目

科数网

高等数学30

数学

解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 二阶可导并且 $f(x)$ 具有反函数 $f^{-1}(x), f(0)=0, f^{\prime}(0)=1$, 求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{f^{-1}(x)}\right]$ 。

若二元函数 $f(u, v)$ 对每个变量都具有二阶连续偏导数, 并且满足 $u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}=4 f(u, v)$, 并且 满足 $\frac{\partial^2 f}{\partial u^2}+\frac{\partial^2 f}{\partial v^2}=u^2+v^2$ 。
(1) 求证: $\left\{\begin{array}{l}u^2 \frac{\partial^2 f}{\partial u^2}+2 u v \frac{\partial^2 f}{\partial u \partial v}+v^2 \frac{\partial^2 f}{\partial v^2}=12 f(u, v) \\ v^2 \frac{\partial^2 f}{\partial u^2}-2 u v \frac{\partial^2 f}{\partial u \partial v}+u^2 \frac{\partial^2 f}{\partial v^2}=\left(u^2+v^2\right)^2-12 f(u, v)\end{array}\right.$
(2) 记 $g(x, y)=f\left(\mathrm{e}^{\lambda x} \cos y, \mathrm{e}^{\lambda x} \sin y\right)$, 其中 $\lambda$ 是一个常数, 求解 $\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$ 。

计算 $\iint_D\left(x y \mathrm{e}^{x^2+y^2}+x^2\right) \mathrm{d} x \mathrm{~d} y$, 其中 $D: x^2+y^2 < |x|+|y|$ 。

设函数 $f(x)$ 的定义域为全体实数, 并且 $f(x)$ 具有二阶导数, 并且 $f^{\prime \prime}(x)>0, f^{\prime}(x)>0$, 在同 一个坐标系下, 曲线 $y=f(x)$ 和直线 $y=x$ 有且只有两个交点 $P_1(a, f(a))$ 和 $P_2(b, f(b))$, 其中 $a < b$ 。
(1) 求证: $f^{\prime}(a) < 1 < f^{\prime}(b)$ 。并且 $\forall x < a$, 一定有 $f(x)>x ; \forall a < x < b$, 一定有 $f(x) < x$ 。
(2) 设数列 $\left\{x_n\right\}$ 满足 $x_{n+1}=f\left(x_n\right)$, 求证: 当 $x_1 < a$ 时, $\lim _{n \rightarrow \infty} x_n=a$; 当 $a < x_1 < b$ 时, $\lim _{n \rightarrow \infty} x_n=a$ 。

计算 $\lim _{n \rightarrow \infty}\left[\sum_{k=1}^n \frac{k^2}{n^2+k}-\frac{n}{3}\right]$.

设 $p$ 是某正整数, $I_n=\frac{1^p+2^p+\cdots+n^p}{n^p}-\frac{n}{p+1}$ ,试求 $\lim _{n \rightarrow \infty} I_n$.

试卷二维码

分享此二维码到群,让更多朋友参与