解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
证明下列问题
(1). $\forall x>0, y \in R$, 则有 $x y < x \ln x-x+\mathrm{e}^y$;
(2). $\sum_{k=0}^n C_\alpha^k C_\beta^{n-k}=C_{\alpha+\beta}^n$, 其中
$$
C_\alpha^k=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k !}, C_\alpha^0=1
$$
求证
$$
\lim _{n \rightarrow+\infty}\left(\int_0^1\left(a+x^n\right) f(x) \mathrm{d} x\right)^{\frac{1}{n}}=1+a
$$
设 $f(x)$ 在 $(-\infty,+\infty)$ 上可导, 若
$
f(x)=f(x+2 k)=f(x+b)
$
其中 $k$ 为正整数, $b$ 为正无理数, 则利用傅立叶级数证明 $f(x)$ 为一常数.
设函数 $f(x)=\mathrm{e}^{-x} \int_0^x \frac{t^{2023}}{1+t^2} \mathrm{~d} t$, 正整数 $n \leq 2023$, 求导数 $f^{(n)}(0)$.
设函数 $f(x)$ 在区间 $(0,1)$ 内有定义, $\lim _{x \rightarrow 0^{+}} f(x)=0$, 且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f\left(\frac{x}{3}\right)}{x}=0$. 证明: $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=0$.
设函数 $f(x)$ 在区间 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=0, f(1)=2$. 证明: 存在两两互异的点 $\xi_1, \xi_2, \xi_3 \in(0,1)$, 使得 $f^{\prime}\left(\xi_1\right) f^{\prime}\left(\xi_2\right) \sqrt{1-\xi_3} \geq 2$.