解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 在 $[1,+\infty)$ 连续可微, $\left|f^{\prime}(x)\right| \leq 1(x \geq 1)$. 求证 $\frac{f(x)}{x}$ 在 $[1,+\infty)$ 一致连续.
设 $D=\left\{(x, y): x^2+y^2 \leq 1\right\}$, 实数 $\alpha, \beta$ 满足 $\alpha^2+\beta^2=1$, 计算二重积分
$$
\iint_D \frac{\mathrm{d} x \mathrm{~d} y}{\sqrt{(1-\alpha x+\beta y)^2+(\beta x+\alpha y)^2}} .
$$
利用变换 $u=x+e^y, v=x-e^y$ 求解微分方程 $e^{2 y} z_{x x}-z_{y y}+z_y=0$.
计算 $f(x, y)=5 x^2+5 y^2-8 x y$ 在条件 $x^2+y^2-x y=75$ 下的最小值.
计算 $\sum_{n=1}^{\infty} \frac{n(n+2023)}{2^{n+2023}}$.
计算 $\oint_L \frac{(x+y) \mathrm{d} x+(y-x) \mathrm{d} y}{x^2+y^2}, L$ 是 $x^2+2 y^2=1$ 沿逆时针方向.