科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学04

数学

设函数 $f(x)$ 在 $x=1$ 的某一邻域内可微, 且满足
$
f(1+x)-3 f(1-x)=4+2 x+o(x),
$
其中 $o(x)$ 是当 $x \rightarrow 0$ 时 $x$ 的高阶无穷小, 则曲线 $y=f(x)$ 在点 $(1, f(1))$ 处的切线方程为



设 $y=y(x)$ 是初值问题 $\left\{\begin{array}{l}y^{\prime \prime}-2 y^{\prime}-3 y=1, \\ y(0)=0, y^{\prime}(0)=1\end{array}\right.$ 的解, 则 $y(x)=$



设可微函数 $z=z(x, y)$ 满足 $x^2 \frac{\partial z}{\partial x}+y^2 \frac{\partial z}{\partial y}=2 z^2$, 又设 $u=x, v=\frac{1}{y}-\frac{1}{x}$,
$w=\frac{1}{z}-\frac{1}{x}$, 则对函数 $w=w(u, v)$, 偏导数 $\left.\frac{\partial w}{\partial u}\right|_{\substack{u=2 \\ v=1}}=$



设 $a>0$, 则均匀曲面 $x^2+y^2+z^2=a^2(x \geq 0, y \geq 0, z \geq 0)$ 的重心坐标为



$\lim _{x \rightarrow 0}\left(\cos x+\mathrm{e}^{-x^2}-1\right)^{\frac{x}{\arctan x-x}}=$



$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{|x|}{1+\sin x} \mathrm{~d} x=$



设连续函数 $f(x)$ 满足 $f(x)+2 x \int_0^x f(x-t) \mathrm{d} t=x(x>0)$, 且 $f(1)=\frac{1}{\mathrm{e}}$, 则 $f(x)$ 的极大值点和极大值分别为



$\lim _{n \rightarrow \infty} \sum_{i=1}^n \frac{i}{n^2}\left(1+\cos \frac{i \pi}{n}\right)^2=$



$\lim _{x \rightarrow 3} \dfrac{\sqrt{x^3+9}-6}{2-\sqrt{x^3-23}}=$



设 $f(x)=\frac{1}{x^2-3 x+2}$, 则 $f^{(n)}(0)=$



幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2 n}}{n(2 n-1)}$ 的收敛域为



设曲面 $\Sigma$ 是平面 $y+z=5$ 被柱面 $x^2+y^2=25$ 所截得的部分, 则 $\iint_{\Sigma}(x+y+z) \mathrm{dS}=$



(1) $\lim _{x \rightarrow \infty}\left(\frac{x+3}{x+2}\right)^{2 x-1}=$



设 $z=f\left(x^2-y^2, x y\right)$, 且 $f(u, v)$ 有连续的二阶偏导数,则 $\frac{\partial z^2}{\partial x \partial y}=$



设曲线 $y=\ln (1+a x)+1$ 与曲线 $y=2 x y^3+b$ 在 $(0,1)$ 处相切,则 $a+b=$



设函数 $y=y(x)$ 由方程 $y=1+\arctan (x y)$ 所决定, 则 $y^{\prime}(0)=$



计算 $\int_0^1 \mathrm{~d} x \int_x^{\sqrt{x}} \frac{\cos y}{y} \mathrm{~d} y=$



$\int_0^\pi d \theta \int_0^{\frac{1}{\cos \theta}} \rho^2 d \rho+\int_1^{\sqrt{2}} d x \int_0^{\sqrt{2-x^2}} \sqrt{x^2+y^2} d y=$



$\int_0^1 d y \int_y^1 x \sqrt{2 x y-y^2} d x=$



$ \lim _{n \rightarrow \infty} \dfrac{\sqrt[n]{2}-1}{\sqrt[n]{2 n+1}}\left[\int_1^{\frac{1}{2 n}} e^{-y^2} d y+\int_1^{\frac{3}{2 n}} e^{-y^2} d y+\cdots+\int_1^{\frac{2n-1}{2 n}} e^{-y^2} d y\right]= $



设 $D$ 是由 $0 \leq x \leq 1,0 \leq y \leq 1$ 所确定的平面区域, 则
$$
\iint_D \sqrt{x^2+y^2} d x d y=
$$



计算积分 $ \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} d \theta \int_0^{2 \sin \theta}\left[\sin \theta+\cos \theta \sqrt{1+r^2 \sin ^2 \theta}\right] r^2 d r $



设函数 $f(x)$ 二阶可导, 且 $f^{\prime}(x)=f(1-x), f(0)=1$ 则 $f(x)=$



设 $f(x)$ 是可导函数, 且 $f(0)=0, g(x)=\int_0^1 x f(t x) d t$, 并满足方程 $f^{\prime}(x)+g^{\prime}(x)=x$, 则由曲线 $y=f(x), y=e^{-x}$ 及直线 $x=0, x=2$围成平面图形的面积为



设 $f(x)$ 连续, 且当 $x \rightarrow 0$ 时 $F(x)=\int_0^x\left(x^2+1-\cos t\right) f(t) \mathrm{d} t$ 是与 $x^3$ 等价的无穷小, 则 $f(0)=$



$\lim _{n \rightarrow \infty}\left[n \sum_{k=1}^n \ln \left(1+\frac{k}{n^2}\right)-\frac{1}{2}(n+1)\right]$



可微函数 $f(x)$ 满足 $f^{\prime}(x)=f(x)+\int_0^1 f(x) \mathrm{d} x$, 且 $f(0)=1$, 则 $f(x)=$



已知函数 $f(x, y)=4+a x+a y$ 在区域 $x^2+y^2 \leqslant 1$ 上的最小值与最大值之积为 $\iint_{x^2+y^2 \leqslant 1} f(x, y) \mathrm{d} x \mathrm{~d} y$,则 $a=$



已知 $f^{\prime}(x)=\frac{\sin x}{x}$, 且 $f(\pi)=a$, 则 $\int_0^\pi f(x) \mathrm{d} x=$



试卷二维码

分享此二维码到群,让更多朋友参与