科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学02

数学

已知级数 $\sum_{n=1}^{\infty} \frac{n !}{n^n} e^{-n x}$ 的收敛域为 $(a,+\infty)$, 则 $a=$



设函数 $y(x)$ 是微分方程 $y^{\prime}+\frac{1}{2 \sqrt{x}} y=2+\sqrt{x}$ 满足条件 $y(1)=3$ 的解, 求 $y(x)$ 的渐进线.



已知 $\Sigma$ 为曲面 $4 x^2+y^2+z^2=1(x \geq 0, y \geq 0, z \geq 0)$ 的上侧, $L$ 是 $\Sigma$ 的边界曲线, 其正向与与 $\Sigma$ 的正法向量满足右手法则, 计算积分曲线



设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内有二阶连续导数, 证明: $f^{\prime \prime}(x) \geq 0$ 的充要条件是: 对不同实数 $a$, $b, f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) d x$.



$\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{\sin x}-\frac{1}{\tan x}\right)=$



若 $f(x)$ 可导, $y=f\left(e^x\right)$, 则 $d y=$



函数 $f(x)=\frac{1}{1-x}$, 则 $f^{(n)}(0)=$



曲线 $y=x^2-1$ 在其顶点处的曲率 $K$ 是



$\int \tan ^2 x d x $;



$\int_{-1}^1\left(\sqrt{1-x^2}+\frac{x^2 \sin x}{1+x^2}\right) d x=$



设 $r=(x, y, z), r=\sqrt{x^2+y^2+z^2}$, 函数 $f(x)$ 可微, 曲线 $L$ 是一条有限的、不经过坐标原点的单侧光滑曲面 $S$ 的边界曲线, $L$ 的正向与曲面 $S$ 的正向符合右手法则, 则 $\oint_{\text {L. }} \frac{x}{r} f(r) \mathrm{d} x+\frac{y}{r} f(r) \mathrm{d} y+\frac{z}{r} f(r) \mathrm{d} z=$



设函数 $f(x, y)$ 可微. 若已知 $f$ 在点 $P\left(x_0, y_0\right)$ 处沿 $\boldsymbol{l}_1=\boldsymbol{i}-\boldsymbol{j}$ 和 $\boldsymbol{l}_2=\boldsymbol{i}+\boldsymbol{j}$ 的方向导数分别为 $\frac{\partial f(P)}{\partial \boldsymbol{l}_1}=m_1$ 和 $\frac{\partial f(P)}{\partial \boldsymbol{l}_2}=m_2$, 且 $m_1^2+m_2^2 \neq 0$, 则 $f(x, y)$ 在点 $P$ 处变化最快的方向是



设 $f(x)$ 二阶可导, $f(1)=1, g(x)$ 为其反函数, $g^{\prime}(1)=g^{\prime \prime}(1)=a \neq 0$, 则 $\left.\left[\frac{\mathrm{d}^2}{\mathrm{~d} x^2} \int_0^{f(x)} \operatorname{tg}(t) \mathrm{d} t\right]\right|_{x=1}=$



已知方程 $y^{\prime \prime}+a_1(x) y^{\prime}+a_2(x) y=f(x)$ 有三个解: $y_1=1, y_2=x^2+1$ 和 $y_3=\mathrm{e}^{2 x}+1$, 则此方程右端的函数项 $f(x)=$



如果 $\lim _{x \rightarrow 2} \frac{x^2+a x+b}{x^2-x-2}=2$, 则常数 $a=$ , $b=$



设 $y=\mathrm{e}^{\sqrt{\cos x}}$, 则 $\mathrm{d} y=$



试卷二维码

分享此二维码到群,让更多朋友参与