公众号考研数学李艳芳每日一题集

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。

3. 考试结束后, 将本试卷和答题卡一并交回。

4.本试卷由kmath.cn自动生成。

学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 12 题 ),每题只有一个选项正确
设函数 $f(x), g(x)$ 二阶可导且二阶导函数在 $x=a$ 处连续, 若 $\lim _{x \rightarrow a} \frac{f(x)-g(x)}{(x-a)^2}>0$, 则下列说法中, 正确的个数是
① 在 $a$ 的某邻域内, $f(x) \geqslant g(x)$.
② 在点 $(a, f(a))$ 处, $y=f(x)$ 的曲率大于 $y=g(x)$ 的曲率.
③ 若 $x=a$ 为 $f(x)$ 的极大值点, 则 $x=a$ 也为 $g(x)$ 的极大值点.
④ 若 $x=a$ 为 $f(x)$ 的极小值点, 则 $x=a$ 也为 $g(x)$ 的极小值点.
$\text{A.}$ 1个 $\text{B.}$ 2个 $\text{C.}$ 3个 $\text{D.}$ 4个

设 $I_1=\int_0^\pi \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_2=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_3=\int_\pi^{2 \pi} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_2 < I_3 < I_1$. $\text{D.}$ $I_2 < I_1 < I_3$.

设 $I_k=\int_0^{k \pi} \mathrm{e}^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$, 则有
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_2 < I_3 < I_1$. $\text{D.}$ $I_2 < I_1 < I_3$.

设 $\boldsymbol{A}=\left(a_{i j}\right)$ 为 3 阶负定矩阵且 $|\boldsymbol{A}|=-1, \operatorname{tr}(\boldsymbol{A})=-\frac{7}{2}, \boldsymbol{\xi}=(1,1,1)^{\mathrm{T}}$ 是 $\boldsymbol{A}$ 的一个特征向量. 已知 $\sum_{i, j=1}^3\left(a_{i j}+A_{j i}\right)=0$, 其中 $A_{i j}$ 是 $a_{i j}$ 的代数余子式, 则下列说法中,正确的是
$\text{A.}$ 矩阵 $\boldsymbol{A}$ 的所有元素之和为 6 . $\text{B.}$ 矩阵 $\boldsymbol{A}$ 的所有元素之和为 -6 . $\text{C.}$ 矩阵 $\boldsymbol{A}-\boldsymbol{E}$ 与 $\boldsymbol{E}-\boldsymbol{A}$ 合同. $\text{D.}$ 矩阵 $\boldsymbol{A}^2-\boldsymbol{E}$ 与 $\boldsymbol{E}-\boldsymbol{A}^2$ 合同.

设 $D_k$ 是区域 $D=\{(x, y)|| x|+| y \mid \leqslant \mathrm{e}\}$ 在第 $k$ 象限的部分, 记 $I_k=\iint_{D_k} \ln \frac{3+y}{3+x} \mathrm{~d} x \mathrm{~d} y$,则 $\max _{1 \leqslant k \leqslant 4}\left\{I_k\right\}=$
$\text{A.}$ $I_1$. $\text{B.}$ $I_2$. $\text{C.}$ $I_3$. $\text{D.}$ $I_4$.

设 $\boldsymbol{A}=\left(a_{i j}\right)$ 为 3 阶对角矩阵, 且 $a_{11}=1$, 将 $\boldsymbol{A}$ 的第一行的 2 倍加到第二行得到矩阵 $\boldsymbol{B}$, 再对 $\boldsymbol{B}$ 作初等变换 $T$ 得到矩阵 $\boldsymbol{C}$, 则下列说法中, 正确的是
$\text{A.}$ 若 $T$ 为将 $\boldsymbol{B}$ 的第二列的 -2 倍加到第一列, 则 $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 相似且合同. $\text{B.}$ 若 $T$ 为将 $\boldsymbol{B}$ 的第二列的 -2 倍加到第一列, 则 $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 相似, 但不合同. $\text{C.}$ 若 $T$ 为将 $\boldsymbol{B}$ 的第一列的 2 倍加到第二列, 则 $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 合同且相似. $\text{D.}$ 若 $T$ 为将 $\boldsymbol{B}$ 的第一列的 2 倍加到第二列,则 $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 合同,但不相似.

设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 0个 $\text{B.}$ 1个 $\text{C.}$ 2个 $\text{D.}$ 3个

设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n(n \geqslant 2)$ 阶矩阵, 则下列说法中, 错误的是
$\text{A.}$ $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)$ 与 $\left(\begin{array}{ll}\boldsymbol{B} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}\end{array}\right)$ 相似. $\text{B.}$ $\left(\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O}\end{array}\right)$ 与 $\left(\begin{array}{ll}\boldsymbol{O} & \boldsymbol{B} \\ \boldsymbol{A} & \boldsymbol{O}\end{array}\right)$ 相似. $\text{C.}$ $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)$ 与 $\left(\begin{array}{ll}\boldsymbol{O} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{O}\end{array}\right)$ 相似. $\text{D.}$ $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)$ 与 $\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{B}-\boldsymbol{A} \\ \boldsymbol{O} & \boldsymbol{B}\end{array}\right)$ 相似.

设矩阵 $\boldsymbol{A}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2\end{array}\right)$, 其中 $a, b, c, d$ 互不相同, $M_i(i=1,2,3,4)$ 为 $\boldsymbol{A}$ 划掉第 $i$ 列后所得 3 阶矩阵的行列式, $\boldsymbol{b}=\left(1, a, a^2\right)^{\mathrm{T}}$. 若 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$ 是 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 的两个不同的解,则
$\text{A.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1-\boldsymbol{\xi}_2=k\left(M_1, M_2, M_3, M_4\right)^{\mathrm{T}}$. $\text{B.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1-\boldsymbol{\xi}_2=k\left(-\boldsymbol{M}_1, \boldsymbol{M}_2,-\boldsymbol{M}_3, \boldsymbol{M}_4\right)^{\mathrm{T}}$. $\text{C.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1+\boldsymbol{\xi}_2=k\left(-M_1,-M_2, M_3, M_4\right)^{\mathrm{T}}+(2,0,0,0)^{\mathrm{T}}$. $\text{D.}$ 存在非零常数 $k$, 使得 $\boldsymbol{\xi}_1+\boldsymbol{\xi}_2=k\left(-M_1, M_2,-M_3, M_4\right)^{\mathrm{T}}+(1,0,0,0)^{\mathrm{T}}$.

设总体 $X$ 的分布律为 $P\left\{X=(-1)^n n+p\right\}=\frac{1}{n(n+1)}, n=1,2, \cdots$, 其中 $p$ 为未知参数, $X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, $\bar{X}$ 为样本均值, 则 $p$ 的矩估计量 $\hat{p}=$
$\text{A.}$ $\bar{X}-\ln 2$. $\text{B.}$ $\bar{X}+\ln 2$. $\text{C.}$ $\bar{X}-\ln 2+1$. $\text{D.}$ $\bar{X}+\ln 2-1$.

设曲线 $y=f(x)$ 由 $\left\{\begin{array}{l}x=t|t|, \\ y=t^2 \mathrm{e}^{\frac{1}{3}}\end{array}\right.$ 确定, 则该曲线的渐近线的条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设函数 $f(x)$ 在 $(0,+\infty)$ 上连续, $f(1)=1$, 且对任意正数 $a, b, \int_{\frac{1}{a+b}}^{\frac{1}{a}} f(x) \mathrm{d} x$ 的值仅与 $b$ 有关, 则下列说法中, 错误的是
$\text{A.}$ $f(x)>0$. $\text{B.}$ $\lim _{x \rightarrow+\infty} f(x)=0$. $\text{C.}$ $f(x)$ 在 $(0,+\infty)$ 上是单调函数. $\text{D.}$ 曲线 $y=f(x)$ 在 $(0,+\infty)$ 上为凸曲线.