第十章1

数 学



单选题 (共 3 题 ),每题只有一个选项正确
二元函数 $f(x, y)$ 在点 $(0,0)$ 处可微的一个充分条件是
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)}[f(x, y)-f(0,0)]=0$. $\text{B.}$ $\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0$ 且 $\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=0$. $\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\sqrt{x^2+y^2}}=0$. $\text{D.}$ $\lim _{x \rightarrow 0}\left[f_x^{\prime}(x, 0)-f_x^{\prime}(0,0)\right]=0$ 且 $\lim _{y \rightarrow 0}\left[f_y^{\prime}(0, y)-f_y^{\prime}(0,0)\right]=0$

如果函数 $f(x, y)$ 在点 $(0,0)$ 处连续, 那么下列命题正确的是
$\text{A.}$ 若极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{|x|+|y|}$ 存在, 则 $f(x, y)$ 在点 $(0,0)$ 处可微. $\text{B.}$ 若极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{x^2+y^2}$ 存在, 则 $f(x, y)$ 在点 $(0,0)$ 处可微. $\text{C.}$ 若 $f(x, y)$ 在点 $(0,0)$ 处可微, 则极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{|x|+|y|}$ 存在. $\text{D.}$ 若 $f(x, y)$ 在点 $(0,0)$ 处可微, 则极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{x^2+y^2}$ 存在.

设 $f(x, y)$ 在 $(0,0)$ 的某邻域内连续, 且 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{x^2+|y|}=1$, 则 $f(x, y)$ 在 $(0,0)$ 处
$\text{A.}$ 取极大值. $\text{B.}$ 取极小值. $\text{C.}$ 不取极值. $\text{D.}$ 无法确定.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。