科数网
题号:19853    题型:单选题    来源:高等数学同步训练提高版(多元函数微分学)
二元函数 $f(x, y)$ 在点 $(0,0)$ 处可微的一个充分条件是
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)}[f(x, y)-f(0,0)]=0$. $\text{B.}$ $\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0$ 且 $\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=0$. $\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\sqrt{x^2+y^2}}=0$. $\text{D.}$ $\lim _{x \rightarrow 0}\left[f_x^{\prime}(x, 0)-f_x^{\prime}(0,0)\right]=0$ 且 $\lim _{y \rightarrow 0}\left[f_y^{\prime}(0, y)-f_y^{\prime}(0,0)\right]=0$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP