哈哈哈哈

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则 $f^{\prime}(0), f^{\prime}(1), f(1)-f(0)$ 或 $f(0)-f(1)$ 几个数的大小顺序为 )
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$ $\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$ $\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$ $\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$

已知函数 $f(x)$ 具有任意阶导数, 且 $f^{\prime}(x)=[f(x)]^2$, 则当 $n \geq 2$ 时, $f^{(n)}(x)$ 等于 ( )
$\text{A.}$ $n![f(x)]^{n+1}$ $\text{B.}$ $[f(x)]^{n+1}$ $\text{C.}$ $[f(x)]^{2 n}$ $\text{D.}$ $n![f(x)]^{2 n}$

设函数 $f(x)$ 在 $x=0$ 的某个邻域内具有连续二阶导数, 且 $\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{e^x-1}=1$,则 $f(x)$ 在 $x=0$ 处 ( ).
$\text{A.}$ 有极值; $\text{B.}$ 无极值; $\text{C.}$ 无拐点; $\text{D.}$ 有拐点.

设函数 $f(x)=x^4+\left|x^3\right|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 $n=(\quad)$.
$\text{A.}$ 1 ; $\text{B.}$ 2 ; $\text{C.}$ 3 ; $\text{D.}$ 4.

二、填空题 (共 2 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设函数 $f(x)$ 可导, 且 $y=f\left(\sin ^2 x\right)+f\left(\cos ^2 x\right)$, 则 $\frac{d y}{d x}=$


设 $f(x)=x \sin x$, 则 $f^{(6)}(0)=$


三、解答题 ( 共 6 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求方程 $x \lg x=1$ 的近似根, 使误差不超过 0.01 .



设 $a_0+\frac{a_1}{2}+\cdots+\frac{a_n}{n+1}=0$, 证明多项式 $f(x)=a_0+a_1 x+\cdots+a_n x^n$ 在 $(0,1)$ 内至少有一个零点.



求由方程 $y^2+2 \ln y=x^4$ 所确定的隐函数 $y$ 的导数$\frac{d y}{d x}$



证明:当 $x>0$ 时, $1+\frac{1}{2} x>\sqrt{1+x}$ 。



设函数 $f(x)$ 在 $[a, b]$ 上连续, $\int_a^b f(x) d x=\int_a^b x f(x) d x=0$,求证: $\exists \xi, \eta \in(a, b),(\xi \neq \eta)$, 使得 $f(\xi)=0, f(\eta)=0$.



设 $f(x)=[\varphi(x)-\varphi(0)] \ln (1+2 x), g(x)=\int_0^x \frac{t}{1+t^3} d t$, 其中 $\varphi(x)$ 在 $x=0$ 处可导, 且 $\varphi^{\prime}(0)=1$, 证明: $f(x)$ 与 $g(x)$ 为 $x \rightarrow 0$ 时的同阶无穷小。



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷