连续性与间断点解答题2(26)

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、解答题 ( 共 26 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $f(x)$ 的二阶导函数连续, 且 $\lim _{x \rightarrow 0} \frac{f(x)+\cos x}{x^2}=1$, 求 $f(0), f^{\prime}(0), f^{\prime \prime}(0)$.



设曲线 $x=y^2(y>0), x=2-y^2(y>0)$ 及 $y=0$ 围成一平面图形 D.
(1) 求平面图形 D 的面积;
(2) 求平面图形 D 绕 $y$ 轴旋转一周而成的立体的体积



计算函数 $ y=\left(\frac{x}{1+x}\right)^x $ 的一阶导数



设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上二阶可导, 函数 $g(x)=\left\{\begin{array}{cc}a x^2+b x+c & x>0 \\ f(x) & x \leq 0\end{array}\right.$, 试确定常数 $a, b, c$ 的值, 使得函数 $g(x)$ 在 $x=0$ 点二阶可导.



证明:当 $ x> 0 $ 时, $ 1+x \ln \left(x+\sqrt{1+x^2}\right)>\sqrt{1+x^2} $



设 $y=y(x)$ 满足 $x^2 y^{\prime}+y=x^2 \mathrm{e}^{\frac{1}{x}}(x \neq 0)$, 且 $y(1)=3 \mathrm{e}$.
(I) 求 $y=y(x)$ 的全部渐近线方程;
(II) 讨论曲线 $y=y(x)$ 与 $y=k(k>0)$ 不同交点的个数.



求出使不等式
$$
\left(1+\frac{1}{n}\right)^{n+a} \leqslant \mathrm{e} \leqslant\left(1+\frac{1}{n}\right)^{n+\beta}, n=1,2, \cdots
$$
成立的最大的数 $\alpha$ 和最小的数 $\beta$.



$\lim _{x \rightarrow 0} \frac{(2+3 \sin x)^x-2^x}{\tan ^2 x-4 x^3}$.



求曲线 $y=\frac{2 x^3}{x^2+2 x}$ 的所有渐近线方程.



已知曲线的极坐标方程是 $r=1-\cos \theta$ ,求该曲线上对应于 $\theta=\frac{\pi}{6}$ 处的切线与法线的直角坐标方程.



已知 $y=1+x e^{x y}$, 求 $\left.y^{\prime}\right|_{x=0}$ 及 $\left.y^{\prime \prime}\right|_{x=0}$.



已知 $\left\{\begin{array}{l}x=\ln \left(1+t^2\right) \\ y=\arctan t\end{array}\right.$ ,求 $\frac{d y}{d x}$ 及 $\frac{d^2 y}{d x^2}$.



设函数 $y=\frac{3 x+2}{2 x^2+x-3}$ ,求 $y^{(n)}(0)$.



一长为 $L$ 米的木梯斜靠在倾角为 $\frac{\pi}{3}$ 的光滑斜坡上,A点位于斜坡底部,木梯的顶部距 离 $A$ 点 $h$ 米,底部距离 $A$ 点 $d$ 米,受重力作用木梯的顶部以 $a \mathrm{~m} / \mathrm{s}$ 的速度沿斜坡下滑,底部水平向右运动. 问: 当木梯的顶部和 底部与 $A$ 点的距离相等时,底部移动的水平速度为多少?



设函数 $f(x)=\left\{\begin{array}{l}\mathrm{e}^x(\sin x+\cos x), x \leq 0, \\ a x^2+b x+c, \quad x>0,\end{array}\right.$ 试确定常数 $a, b, c$ 的值使得 $f^{\prime \prime}(x)$ 在 $(-\infty,+\infty)$ 内处处存在.



已知等式 $\left(1-x^2\right) \frac{d^2 y}{d x^2}-x \frac{d y}{d x}+a^2 y=0$ ,对其作变量代 换 $x=\sin t$ ,计算所得 $y$ 关于 $t$ 的导数的等式.



设 $f(x)$ 是 $[0,1]$ 上的连续函数, 证明: 存在 $c \in(0,1)$
使得 $\int_0^c f(x) \mathrm{d} x=(1-c) f(c)$.



求实系数二次多项式 $p(x)$ ,使得
$$
\left|p(x)+\frac{1}{x-3}\right| < 0.02, \forall x \in[-1,1] \text {. }
$$



设 $f(x)$ 是 $R$ 上的一个有界连续函数,且满足
$$
\lim _{h \rightarrow 0} \sup _{x \in R}|f(x+h)-2 f(x)+f(x+h)|=0 \text {. }
$$
证明: $f(x)$ 在 $R$ 上一致连续.



设函数 $f(x)$ 在 $[a, b]$ 上连续.
(1) 证明存在 $\xi \in(a, b)$, 使得 $\int_a^{\xi} f(x) \mathrm{d} x=(b-\xi) f(\xi)$;
(2) 如果 $f(x)$ 在 $(a, b)$ 内取得最大值和最小值, 证明存在 $\eta \in(a, b)$, 使得
$$
\int_a^\eta f(x) \mathrm{d} x=(\eta-a) f(\eta) .
$$



已知 $y(x)$ 由 $x=\int_1^{y-x} \sin ^2\left(\frac{\pi}{4} t\right) \mathrm{d} t$ 确定,求 $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}$.



已知 $f(x)$ 在 $[0,2]$ 上二阶可导,且
$$
\max _{0 \leq x \leq 2}\left\{|f(x)|,\left|f^{\prime \prime}(x)\right|\right\} \leq 1 ,
$$
证明: 对任意的 $x \in[0,2],\left|f^{\prime}(x)\right| \leq \mathbf{2}$.



证明: $I(x)=\int_0^{+\infty} \frac{\sin (x y)}{y} d y$ 在 $(0,+\infty)$ 上内闭一致 收敛.



求极限: $\lim _{x \rightarrow 0^{+}} \frac{x^x-(\sin x)^x}{x^3}$



求极限: $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$



求极限: $ \lim _{x \rightarrow 0}\left[\frac{\sin (\sin x)}{\sin (\arctan x)}\right]^{\frac{1}{1-\cos x}}$



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。