科数网
试题 ID 2911
【所属试卷】
2023大一高数导数与微分期末考试
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上二阶可导, 函数 $g(x)=\left\{\begin{array}{cc}a x^2+b x+c & x>0 \\ f(x) & x \leq 0\end{array}\right.$, 试确定常数 $a, b, c$ 的值, 使得函数 $g(x)$ 在 $x=0$ 点二阶可导.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上二阶可导, 函数 $g(x)=\left\{\begin{array}{cc}a x^2+b x+c & x>0 \\ f(x) & x \leq 0\end{array}\right.$, 试确定常数 $a, b, c$ 的值, 使得函数 $g(x)$ 在 $x=0$ 点二阶可导.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见