解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求 $$\lim _{x \rightarrow 0} \frac{\left(\int_0^x e^{t^2} d t\right)^2}{\int_0^x t e^{2 t^2} d t}$$
设 $f(x)$ 二阶可导并且 $f(x)$ 具有反函数 $f^{-1}(x), f(0)=0, f^{\prime}(0)=1$, 求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{f^{-1}(x)}\right]$
设 $y=f(x)$ 在 $[0,1]$ 上非负连续, $a \in(0,1)$, 且 $f(x)$ 在 $[0, a]$ 上的平均值等于在 $[a, 1]$ 上以 $f(a)$ 为高的矩形面积. 试证明: (I ) 存在点 $\xi \in(0, a)$ 内使得 $f(\xi)=f(a)(1-a)$; (II) 存在 $\eta \in(0,1)$ 使得 $(\xi-a) f^{\prime}(\eta)=-a f(a)$.