题号:5952    题型:解答题    来源:共创考研辅导中心全国硕士研究生入学统一考试模拟试卷
设 $y=f(x)$ 在 $[0,1]$ 上非负连续, $a \in(0,1)$, 且 $f(x)$ 在 $[0, a]$ 上的平均值等于在 $[a, 1]$ 上以 $f(a)$ 为高的矩形面积. 试证明: (I ) 存在点 $\xi \in(0, a)$ 内使得 $f(\xi)=f(a)(1-a)$; (II) 存在 $\eta \in(0,1)$ 使得 $(\xi-a) f^{\prime}(\eta)=-a f(a)$.
0 人点赞 纠错 ​ 83 次查看 ​ 我来讲解
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP