线性代数期中考试

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
3.考试结束后, 将本试卷和答题卡一并交回。
4.本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 11 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知直线 $L_1: \frac{x-a_2}{a_1}=\frac{y-b_2}{b_1}=\frac{2-c_2}{c_1}$ 与直线 $L_2: \frac{x-a_3}{a_2}=\frac{y-b_3}{b_2}=\frac{z-c_3}{c_2}$ 相交于一点, 法向量 $a_i=\left[\begin{array}{l}a_i \\ b_i \\ c_i\end{array}\right], i=1,2,3$. 则
$\text{A.}$ $a_1$ 可由 $a_2, a_3$ 线性表示 $\text{B.}$ $a_2$ 可由 $a_1, a_3$ 线性表示 $\text{C.}$ $a_3$ 可由 $a_1, a_2$ 线性表示 $\text{D.}$ $a_1, a_2, a_3$ 线性无关

设有向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s ; \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t ; \boldsymbol{\gamma}$, 如果
$$
r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s\right) < r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t\right), r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}\right)=r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t, \boldsymbol{\gamma}\right)
$$
则下列说法中错误的是
$\text{A.}$ 向量 $\boldsymbol{\gamma}$ 不能被 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性表示, 但能被 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性表示 $\text{B.}$ $r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}\right)=r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t\right)$ $\text{C.}$ 如果向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性无关, 则向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性无关 $\text{D.}$ 如果向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 能被向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性表示, 则向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 能被 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}$ 线性表示

设矩阵 $\boldsymbol{A}_{m \times n}, \boldsymbol{B}_{m \times \times}, \boldsymbol{C}_{n \times s}$ 满足 $\boldsymbol{A C}=\boldsymbol{B}$, 以下命题中正确的是
$\text{A.}$ 如果矩阵 $\boldsymbol{C}$ 的列向量组线性无关, 则矩阵 $\boldsymbol{B}$ 的列向量组一定线性无关 $\text{B.}$ 如果矩阵 $\boldsymbol{C}$ 的行向量组线性无关, 则矩阵 $\boldsymbol{B}$ 的行向量组一定线性无关 $\text{C.}$ 如果矩阵 $\boldsymbol{B}$ 的列向量组线性无关, 则矩阵 $\boldsymbol{C}$ 的列向量组一定线性无关 $\text{D.}$ 如果矩阵 $\boldsymbol{B}$ 的行向量组线性无关, 则矩阵 $\boldsymbol{C}$ 的行向量组一定线性无关

设 $\boldsymbol{A}$ 是 $m \times n$ 矩阵, $m < n, r(\boldsymbol{A})=m$, 以下选项中错误的是
$\text{A.}$ 存在 $n$ 阶可逆矩阵 $Q$, 使得 $A Q=\left(\boldsymbol{E}_m \mid \boldsymbol{O}\right)$. $\text{B.}$ 存在 $m$ 阶可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P A}=\left(\boldsymbol{E}_m \boldsymbol{O}\right)$. $\text{C.}$ 齐次线性方程组 $A x=0$ 有零解. $\text{D.}$ 非齐次线性方程组 $\boldsymbol{A x}=\boldsymbol{b}$ 有无穷多解.

二、填空题 (共 7 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\alpha_1=(1,1)^T, \alpha_2=(1,0)^T, \beta_1=(2,3)^T$, $\beta_2=(3,1)^T$ 则 $\alpha_1, \alpha_2$ 到 $\beta_1, \beta_2$ 的过渡矩阵为


设 $D_4=\left|\begin{array}{llll}2 & 3 & 6 & 5 \\ 7 & 9 & 6 & 2 \\ 4 & 8 & 6 & 3 \\ 5 & 6 & 6 & 1\end{array}\right|$ 中元素 $a_{i j}$ 的代数余子式为 $A_{i j}$, 则 $A_{11}+A_{21}+A_{31}+A_{41}=$


三、解答题 ( 共 10 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $A$ 是 $n \times m$ 矩阵, $B$ 是 $m \times n$ 矩阵, 其中 $n < m, E$ 是 $n$ 阶单位矩阵, 若 $A B=E$, 证明 $B$ 的列向量组线性无关.



证明: 若 $A$ 为 $m \times n$ 矩阵, $B$ 为 $n \times p$ 矩阵,则有
$r(A B) \geq r(A)+r(B)-n$. 特别地,当 $A B=O$ 时,有
$r(A)+r(B) \leq n$.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。