几何与代数期末冲刺题(2024.1)

数学



单选题 (共 3 题 ),每题只有一个选项正确
设 $A, B$ 都是可逆矩阵, 且 $A$ 与 $B$ 相似, 则下列结论不一定正确的是
$\text{A.}$ $ A^T$ 与 $B^T$ 相似 $\text{B.}$ $A^{-1}$ 与 $B^{-1}$ 相似 $\text{C.}$ $ A+A^{-1}$ 与 $B+B^{-1}$ 相似 $\text{D.}$ $A+A^T$ 与 $B+B^T$ 相似

设 $\boldsymbol{A}$ 为 2 阶实对称矩阵, 特征值为 $\lambda_1, \lambda_2, \boldsymbol{B}$ 为 2 阶正定矩阵, 特征值为 $\mu_1, \mu_2$. 记 $M=\max _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}}, m=\min _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}}$, 则 $M m=(\quad)$
$\text{A.}$ $\lambda_1 \lambda_2$. $\text{B.}$ $\frac{\mu_1 \mu_2}{\lambda_1 \lambda_2}$. $\text{C.}$ $\frac{\lambda_1 \lambda_2}{\mu_1 \mu_2}$. $\text{D.}$ 由已知条件不能确定.

设 $\boldsymbol{\alpha}=(1,2,3)^{\mathrm{T}}, \boldsymbol{\beta}_1=(0,1,1)^{\mathrm{T}}, \boldsymbol{\beta}_2=(-3,2,0)^{\mathrm{T}}, \boldsymbol{\beta}_3=(-2,-1,1)^{\mathrm{T}}, \boldsymbol{\beta}_4=(-3,0,1)^{\mathrm{T}}$, 且 $\boldsymbol{A}_i=\boldsymbol{\alpha} \boldsymbol{\beta}_i^{\mathrm{T}}, i=1,2,3,4$, 则矩阵 $\boldsymbol{A}_i, i=1,2,3,4$ 中不能相似于对角矩阵的是
$\text{A.}$ $\boldsymbol{A}_1$. $\text{B.}$ $\boldsymbol{A}_2$. $\text{C.}$ $\boldsymbol{A}_3$. $\text{D.}$ $\boldsymbol{A}_4$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。