微积分期末模拟题

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
下列直线中不是曲线 $y=\sqrt{4 x^2+x} \ln \left(2+\frac{1}{x}\right)$ 的渐近线的是
$\text{A.}$ $x=-\frac{1}{2}$. $\text{B.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2+1$. $\text{C.}$ $y=2 x \ln 2+\frac{1}{4} \ln 2$. $\text{D.}$ $y=-2 x \ln 2-\frac{1}{4} \ln 2-1$.

微分方程 $y^{\prime \prime}+4 y=x \cos ^2 x$ 的特解形式为
$\text{A.}$ $a x+b+(A x+B) \cos 2 x+(C x+D) \sin 2 x$ $\text{B.}$ $x(a x+b)+(A x+B) \cos 2 x+(C x+D) \sin 2 x$ $\text{C.}$ $a x+b+x(A \cos 2 x+B \sin 2 x)$ $\text{D.}$ $a x+b+x[(A x+B) \cos 2 x+(C x+D) \sin 2 x]$

下列反常积分发散的是
$\text{A.}$ $\int_1^{+\infty} \frac{1}{x^2} d x$ $\text{B.}$ $\int_0^1 \frac{x d x}{\sqrt{1-x^2}}$ $\text{C.}$ $\int_0^1 \frac{1}{\sqrt{x}} d x$ $\text{D.}$ $\int_1^{+\infty} \frac{1}{x \ln x} d x$

二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $y=y(x)$ 是初值问题 $\left\{\begin{array}{l}y^{\prime \prime}-2 y^{\prime}-3 y=1, \\ y(0)=0, y^{\prime}(0)=1\end{array}\right.$ 的解, 则 $y(x)=$


若 $y=\mathrm{e}^{-x}(1+2 x)+3 \mathrm{e}^x$ 是线性常系数微分方程 $y^{\prime \prime}+p y^{\prime}+q y=A \mathrm{e}^{-x}$ 的特解, 则常数 $A=$


方程 $3 x y y^{\prime}(x)+x^2+y^2=0$ 的通解为


$\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{\sin x}-\frac{1}{\tan x}\right)=$


$\int \tan ^2 x d x $;


$\int_{-1}^1\left(\sqrt{1-x^2}+\frac{x^2 \sin x}{1+x^2}\right) d x=$


三、解答题 ( 共 12 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
已知 $\vec{a}=\vec{i}, \vec{b}=\vec{j}-2 \vec{k}, \vec{c}=2 \vec{i}-2 \vec{j}+\vec{k}$, 求一单位向量 $\vec{m}$ ,使 $\vec{m} \perp \vec{c}$ ,且 $\vec{m}$ 与 $\vec{a}, \vec{b}$ 共面。



设 $f(x)$ 二阶可导, $f(0)=0, f(1)=1, \int_0^1 f(x) \mathrm{d} x=\frac{1}{2}$.
(I) 证明: 存在 $c \in(0,1)$, 使得 $f(c)=c$;
(II) 证明: 存在 $\xi \in(0,1)$, 使得 $f^{\prime \prime}(\xi)=1-f^{\prime}(\xi)$.



解方程 $\left(x^2+y^2+3\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(2 y-\frac{x^2}{y}\right) $



设 $f(x)$ 在 $[0,1]$ 上可导且 $f(0)>0$, $f(1)>0, \int_0^1 f(x) \mathrm{d} x=0$. 证明:
(1) $f(x)$ 在 $[0,1]$ 上至少有两个零点;
(2) 在 $(0,1)$ 内至少存在一点 $\xi$, 使得 $f^{\prime}(\xi)+3 f^3(\xi)=0$.



设 $f(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上连续, 在 $\left(0, \frac{\pi}{2}\right)$ 内连续可导, 且满足 $\int_0^{\frac{\pi}{2}} \cos ^2 x \cdot f(x) \mathrm{d} x=0$, 证明:
( I ) 存在 $\xi \in\left(0, \frac{\pi}{2}\right)$, 使得 $f^{\prime}(\xi)=2 f(\xi) \tan \xi$;
(II) 存在 $\eta \in\left(0, \frac{\pi}{2}\right)$, 使得 $f^{\prime}(\eta)=f(\eta) \tan \eta$.



设 $f(x)$ 二阶可导, $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, 且 $f(1)=1$, 证明 : 存在 $\xi \in(0,1)$, 使得
$$
f^{\prime \prime}(\xi)-2 f^{\prime}(\xi)=-2 \text {. }
$$



求微分方程 $y^{\prime \prime}+y^{\prime}-2 \dot{y}=\mathrm{x}^x+\sin ^2 x$ 的通解.



求函数 $f(x)=\left\{\begin{array}{ll}\frac{x^2+2 x}{\left(e^x-1\right)(x+2)}, & x < 0 \\ \frac{x}{x-1}, & x \geq 0\end{array}\right.$ 的间断点, 并判断类型。



$\int_{\frac{3}{4}}^1 \frac{d x}{\sqrt{1-x}-1}$ 。



设 $f(x)$ 是区间 $[0,1]$ 上的可导函数, 且满足: $0 < f(x) < 1$, 试证:
(1) 至少存在一点 $\xi \in(0,1)$, 使得 $f(\xi)=\xi^{2019}$;
(2)至少存在一点 $\eta \in(0,1)$, 使得 $3 f(\eta)+\eta f^{\prime}(\eta)=2022 \eta^{2019}$ 。



设 $f(x)$ 有二阶连续导数, 在 $x=0$ 的去心邻域内 $f(x) \neq 0, \lim _{x \rightarrow 0} \frac{f(x)}{x}=0, \lim _{x \rightarrow 0}\left[1+x+\frac{f(x)}{x}\right]^{\frac{1}{x}}=e^3$,求 $f^{\prime \prime}(0)$ 及 $\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x}\right]^{\frac{1}{x}}$



设 $\int_0^2 f(x) d x=1, f(2)=\frac{1}{2}, f^{\prime}(2)=0$, 求 $\int_0^1 x^2 f^{\prime \prime}(2 x) d x$



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。